Skip to main content
Logo image

Engineering Statics Open and Interactive

Section C.2 Moment of Inertia of Common Shapes

Table C.2.1. Moments of Inertia of Common Shapes
Shape Centroid Centroidal MOI \(I_x, \ I_y\)
\((b/2, h/2)\)
\(\bar{I}_{x'} = \dfrac{1}{12} b h^3\)
\(\bar{I}_{y'} = \dfrac{1}{12} b^3 h\)
\(I_{x} = \dfrac{1}{3} b h^3\)\(I_{y} = \dfrac{1}{3} b^3 h\)
\((b/3, h/3)\)
\(\bar{I}_{x'} = \dfrac{1}{36} b h^3\)\(\bar{I}_{y'} = \dfrac{1}{36} b^3 h\)
\(I_x = \dfrac{1}{12} b h^3\)\(I_y = \dfrac{1}{12} b^3 h\)
\((r,r)\)
\(\bar{I}_{x'}=\bar{I}_{y'}= \dfrac{\pi}{4} r^4\)
\(I_{x}=I_{y}= \dfrac{5 \pi}{4} r^4\)
\(\left (r, \dfrac{4r}{3\pi} \right)\)
\(\bar{I}_{x'} = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right) r^4\)
\(\bar{I}_{x'} \approx 0.1098\ r^4\)
\(\bar{I}_{y'} = \dfrac{\pi}{8} r^4\)
\(I_x =\dfrac{\pi}{8} r^4\)
\(I_y =\dfrac{5 \pi}{8} r^4\)
\(\left (\dfrac{4r}{3\pi}, \dfrac{4r}{3\pi} \right)\)
\(\bar{I}_{x'} = \frac{1}{2}\left(\frac{\pi}{8} - \frac{8}{9\pi}\right) r^4\)
\(\bar{I}_{x'} = \bar{I}_{y'} \approx 0.0549\ r^4\)
\(I_x = I_y = \dfrac{\pi }{16}r^4\)