In polar coordinates, the unit vector is a vector of magnitude 1, pointing in the same direction as the force, so, by inspection
\begin{align*}
\vec{F} \amp = (\N{100}\, ; 60°)\\
\hat{\vec{F}} \amp = (1\, ; 60°)
\end{align*}
In rectangular coordinates, first express \(\vec{F}\) in terms of its \(x\) and \(y\) components.
\begin{equation*}
\left.\begin{aligned} F_x \amp = F \cos 60°\\ F_y \amp = F \sin 60°\\ \end{aligned}\right\} \implies \vec{F} = \langle F \cos 60°, F \sin 60° \rangle\text{.}
\end{equation*}
\begin{equation*}
\hat{\vec{F}} = \frac{\vec{F}}{F} = \frac{ \langle \N{100} \cos 60°, \N{100} \sin 60° \rangle} {\N{100}} = \langle \cos 60°, \sin 60° \rangle
\end{equation*}