Alternately, you can apply
(2.7.10) and calculate the calculate the dot product of force vector
\(\vec{T}\) with the unit vector
\(\widehat{\vec{AB}}\text{.}\)
First, find the unit vector
\begin{equation*}
\widehat{\vec{AB}} = \frac{\vec{AB}}{AB}= \frac{\m{\langle 0.3464, -0.2, 0 \rangle}}{\m{0.4}} = \langle 0.866, -0.5, 0 \rangle
\end{equation*}
Or, since \(\vec{AB}\) is in the \(xy\) plane with its direction defined by the \(\alpha = \ang{30}\text{,}\) the unit vector \(\widehat{\vec{AB}}\) is found
\begin{equation*}
\widehat{\vec{AB}} = \langle \cos \ang{30}, - \sin \ang{30}, 0 \rangle = \langle 0.866, -0.5, 0 \rangle\text{.}
\end{equation*}
Then find the projection
\begin{align*}
\|\proj_{\vec{AB}}\vec{T}\| \amp = \vec{T} \cdot \widehat{\vec{AB}} \\
\amp = \left( \N{-50} \right) \left( 0.866 \right) + \left( \N{80} \right) \left( -0.5 \right) + \left( \N{40} \right) \left( 0 \right)\\
\amp = \N{-83.30}
\end{align*}