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About this Book

Engineering Statics: Open and Interactive is a free, open-source textbook for
anyone who wishes to learn more about vectors, forces, moments, static equilib-
rium, and the properties of shapes. Specifically, it is appropriate as a textbook
for Engineering Mechanics: Statics, the first course in the Engineering Mechanics
series offered in most university-level engineering programs.

This book’s content should prepare you for subsequent classes covering En-
gineering Mechanics: Dynamics and Mechanics of Materials. At its core, Engi-
neering Statics provides the tools to solve static equilibrium problems for rigid
bodies. The additional topics of resolving internal loads in rigid bodies and
computing area moments of inertia are also included as stepping stones for later
courses. We have endeavored to write in an approachable style and provide many
questions, examples, and interactives for you to engage with and learn from.

Feedback. Feedback and suggestions can be provided directly to the lead
author Dan Baker via email at dan.baker@colostate.edu, by clicking the feed-
back button in the html footer. When reporting errors, please include a bit
of the surrounding text to help locate the problem area in the source. The
EngineeringStaticsGoogleGroup is a good place to ask the authors and users
questions about the book. Please join the group and say “Hi” if you are using
the book for teaching purposes.

Access. The entire book is available for free as an interactive online ebook
at https://engineeringstatics.org. While the interactive version works best on
larger screens, it will also work smartphones but with some limitations due to lim-
ited screen width. A non-interactive PDF version, suitable for printing or offline
reading on a tablet or computer, is available at https://engineeringstatics.org/

pdf/statics.pdf. The PDF is searchable and easy to navigate using embedded
links.

The source files for this book are available on GitHub at https://github.com/

dantheboatman/EngineeringStatics.

License. Engineering Statics: Open and Interactive is licensed under a Cre-
ative Commons Attribution-Non Commercial-Share Alike 4.0 International Li-
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cense BY-NC-SA. You are free to download, use, and print this work as you wish
as long as your use is not primarily intended for or directed toward commercial
advantage or monetary compensation. You can also modify the text as much as
you like (for example to create a custom edition for your students), as long as
you attribute the parts of the book you use to the authors. Please share your
improvements with the authors!

All the GeoGebra content found in the book is licensed under a Creative
Commons Attribution-Non Commercial-Share Alike 3.0 International License
with more detailed information found at https://www.geogebra.org/license

End of Chapter exercises. The randomized end-of-chapter exercises were
made using the Numbas open-source assessment system and Geogebra for the dy-
namic diagrams. Exercises in the EngineeringStaticsRepository can be freely
remixed into your own homework sets or online exams using the NumbasEditor.
You can also use the editor to write new questions or modify existing ones.

The exercises can be integrated into your institution’s Virtual Learning Envi-
ronment to set deadlines and automatically record grades. See the NumbasDocumentation

for more information. To fully take advantage of all the features, you may need
the support of your institution’s IT department to install the NumbasLTIprovider.

Please ask questions about Numbas integration and share any good problems
you write with the Engineering Statics Group.

On the Cover. Photo of the San Francisco–Oakland Bay Bridge and city
skyline, taken from Yerba Buena Island by Artur Westergren.

Image source: https://unsplash.com/photos/Rx92z9dU-mA
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Chapter 1

Introduction to Statics

Engineering Statics is the gateway into engineering mechanics, which is the ap-
plication of Newtonian physics to design and analyze objects, systems, and struc-
tures with respect to motion, deformation, and failure. In addition to learning
the subject itself, you will also develop skills in the art and practice of problem
solving and mathematical modeling, skills that will benefit you throughout your
engineering career.

The subject is called “statics” because it is concerned with particles and rigid
bodies that are in equilibrium, and these will usually be stationary, i.e. static.

The chapters in this book are:

Introduction to Statics— an overview of statics and an introduction to
units and problem solving.

Forces and Other Vectors— basic principles and mathematical operations
on force and position vectors.

Equilibrium of Particles— an introduction to equilibrium and problem
solving.

Moments and Static Equivalence— the rotational tendency of forces, and
simplification of force systems.

Rigid Body Equilibrium— balance of forces and moments for single rigid
bodies.

Equilibrium of Structures— balance of forces and moments on intercon-
nected systems of rigid bodies.

Centroids and Centers of Gravity— an important geometric property of
shapes and rigid bodies.

Internal Forces— forces and moments within beams and other rigid bodies.

Friction— equilibrium of bodies subject to friction.

1



CHAPTER 1. INTRODUCTION TO STATICS 2

Moments of Inertia— an important property of geometric shapes used in
many applications.

Your statics course may not cover all of these topics, or may move through
them in a different order.

Below are two examples of the types of problems you’ll learn to solve in
statics. Notice that each can be described with a picture and problem statement,
a free-body diagram, and equations of equilibrium.

Equilibrium of a particle: A 140 lb person walks across a slackline
stretched between two trees. If angles α and θ are known, find the tension
in each end of the slackline.

x

y
Person’s point of contact
to slackline:

ΣFx = 0

−T1 cosα + T2 cos θ = 0

ΣFy = 0

T1 sinα + T2 sin θ −W = 0

Equilibrium of a rigid body: Given the interaction forces at point C on
the upper arm of the excavator, find the internal axial force, shear force, and
bending moment at point D.

F

D

F Section cut FBD:

ΣFx = 0

−Cx + Fx − Vx −Nx = 0

ΣFy = 0

−Cy − Fy − Vy +Ny = 0

ΣMD = 0

+(dy)Cx + (dx)Cy −MD = 0

The knowledge and skills gained in Statics will be used in your other en-
gineering courses, in particular in Dynamics, Mechanics of Solids (also called
Strength or Mechanics of Materials), and in Fluid Mechanics. Statics will be a
foundation of your engineering career.
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Figure 1.0.1 Map of how Statics builds upon the prerequisites of Calculus and
Physics and then informs the later courses of Mechanics of Solids and Dynamics.

1.1 Newton’s Laws of Motion

Key Questions

• What are the two types of motion?

• What three relationships do Newton’s laws of motion define?

• What are physical examples for each of Newton’s three laws of mo-
tion?

The English scientist Sir Issac Newton established the foundation of mechan-
ics in 1687 with his three laws of motion, which describe the relation between
forces, objects and motion. Motion can be separated into two types:

Translation— where a body changes position without changing its orien-
tation in space, and

Rotation— where a body spins about an axis fixed in space, without
changing its average position.

Some moving bodies are purely translating, others are purely rotating, and
many are doing both. Conveniently, we can usually separate translation and
rotation and analyze them individually with independent equations.

Newton’s three laws and their implications with respect to translation and
rotation are described below.
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1.1.1 Newton’s 1st Law
Newton’s first law states that

an object will remain at rest or in uniform motion in a straight line
unless acted upon by an external force.

This law, also sometimes called the “law of inertia,” tells us that bodies maintain
their current velocity unless a net force is applied to change it. In other words, an
object at rest it will remain at rest and a moving object will hold its current speed
and direction unless an unbalanced force causes a velocity change. Remember
that velocity is a vector quantity that includes both speed and direction, so
an unbalanced force may cause an object to speed up, slow down, or change
direction.

Figure 1.1.1 This rock is at rest with
zero velocity and will remain at rest
until a unbalanced force causes it to
move.

Figure 1.1.2 In deep space, where fric-
tion and gravitational forces are negli-
gible, an object moves with constant
velocity; near a celestial body gravita-
tional attraction continuously changes
its velocity.

Newton’s first law also applies to angular velocities, however instead of force,
the relevant quantity which causes an object to rotate is called a torque by
physicists, but usually called a moment by engineers. A moment, as you will
learn in Chapter 4, is the rotational tendency of a force. Just as a force will cause
a change in linear velocity, a moment will cause a change in angular velocity. This
can be seen in things like tops, flywheels, stationary bikes, and other objects that
spin on an axis when a moment is applied, but eventually stop because of the
opposite moment produced by friction.
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Figure 1.1.3 A spinning top demon-
strates rotary motion.

In the absence of friction this top
would spin forever, but the small fric-
tional moment exerted at the point of
contact with the table will eventually
bring it to a stop.

1.1.2 Newton’s 2nd Law
Newton’s second law is usually succinctly stated with the familiar equation

F = ma (1.1.1)
where F is net force, m is mass, and a is acceleration.

You will notice that the force and the acceleration are in bold face. This
means these are vector quantities, having both a magnitude and a direction.
Mass on the other hand is a scalar quantity, which has only a magnitude. This
equation indicates that a force will cause an object to accelerate in the direction
of the net force, and the magnitude of the acceleration will be proportional to
the net force but inversely proportional to the mass of the object.

When studying Statics we are only concerned with bodies which are not accel-
erating which simplifies things considerably. When an object is not accelerating
a = 0, which implies that it is either at rest or moving with a constant velocity.
With this restriction Newton’s Second Law for translation simplifies to

ΣF = 0 (1.1.2)
where ΣF is read as “the sum of the forces” and used to indicate the net force
acting on the object.

Newton’s second law for rotational motions is similar

M = Iα. (1.1.3)
This equation states that a net moment M acting on an object will cause an angu-
lar acceleration α proportional to the net moment and inversely proportional to
I, a quantity known as the mass moment of inertia. Mass moment of inertia
for rotational acceleration is analogous to ordinary mass for linear acceleration.
We will have more to say about the moment of inertia in Chapter ??.

Again, we see that the net moment and angular acceleration are vectors,
quantities with magnitude and direction. The mass moment of inertia, on the
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other hand, is a scalar quantity and has only a magnitude. Also, since Statics
deals only with objects which are not accelerating α = 0, they will always be at
rest or rotating with constant angular velocity. With this restriction Newton’s
second law implies that the net moment on all static objects is zero.

ΣM = 0 (1.1.4)

1.1.3 Newton’s 3rd Law
Newton’s Third Law states

For every action, there is an equal and opposite reaction.

The actions and reactions Newton is referring to are forces. Forces occur when-
ever one object interacts with another, either directly like a push or pull, or
indirectly like magnetic or gravitational attraction. Any force acting on one
body is always paired with another equal-and-opposite force acting on some
other body.

Figure 1.1.4 The earth exerts a gravitational force on the moon, and the moon
exerts an equal and opposite force on the earth.

These equal-and-opposite pairs can be confusing, particularly when there are
multiple interacting bodies. To clarify, we always begin solving statics problems
by drawing a free-body diagram — a sketch where we isolate a body or system
of interest and identify the forces acting on it, while ignoring any forces exerted
by it on interacting bodies.

Consider the situation in Figure 1.1.5. Diagram (a) shows a book resting on
a table supported by the floor. The weights of the book and table are placed at
their centers of gravity. To solve for the forces on the legs of the table, we use the
free-body diagram in (b) which treats the book and the table as a single system
and replaces the floor with the forces of the floor on the table. In diagram (c)
the book and table are treated as independent objects. By separating them, the
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equal-and-opposite interaction forces of the book on the table and the table on
the book are exposed.

Statics

(a)

Statics

(b)

Statics

(c)
Figure 1.1.5 Free-body diagrams are used to isolate objects and identify relevant
forces and moments.

This will be discussed further in Chapter 3 and Chapter 5.

1.2 Units

Key Questions

• What are the similarities and differences between the commonly used
unit systems?

• How do you convert a value into different units?

• When a problem mentions the pounds, does this mean pounds-force
[lbf] or pounds-mass [lbm]?

Quantities used in engineering usually consist of a numeric value and an
associated unit. The value by itself is meaningless. When discussing a quantity
you must always include the associated unit, except when the correct unit is ‘no
units.’ The units themselves are established by a coherent unit system.

All unit system are based around seven base units, the important ones for
Statics being mass, length, and time. All other units of measurement are formed
by combinations of the base units. So, for example, acceleration is defined as
length [L] divided by time [t] squared, so has units

a = [L/t2].
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Force is related to mass and acceleration by Newton’s second law, so the units
of force are

F = [mL/t2].
In the United States several different unit systems are commonly used includ-

ing the SI system, the British Gravitational system, and the English Engineering
system.

The SI system, abbreviated from the French Système International (d’unités)
is the modern form of the metric system. The SI system is the most widely used
system of measurement worldwide.

In the SI system, the unit of force is the newton, abbreviated N, and the
unit of mass is the kilogram, abbreviated kg. The base unit of time, used by all
systems, is the second. Prefixes are added to unit names are used to specify the
base-10 multiple of the original unit. One newton is equal to 1 kg ·m/s2 because
1 N of force applied to 1 kg of mass causes the mass to accelerate at a rate of
1 m/s2.

The British Gravitational system uses the foot as the base unit of distance,
the second for time, and the slug for mass. Force is a derived unit called the
pound-force, abbreviated lbf, or pound for short. One pound-force will accelerate
a mass of one slug at 1 ft/s2, so 1 lbf = 1 slug · ft/s2. On earth, a 1 slug mass
weighs 32.174 lbf.

The English Engineering system uses the pound-mass as the base unit of
mass, where

32.174 lbm = 1 slug = 14.6 kg.
The acceleration of gravity remains the same as in the British Gravitational

system, but a conversion factor is required to maintain unit consistency.

1 =

[
1 lbf · s2

32.174 ft · lbm

]
=

[
1 slug

32.174 lbm

]
(1.2.1)

The advantage of this system is that (on earth) 1 lbm weighs 1 lbf. It is important
to understand that mass and weight are not the same thing, however. Mass
describes how much matter an object contains, while weight is a force —the
effect of gravity on a mass.

You find the weight of an object from its mass by applying Newton’s Second
Law with the local acceleration of gravity g.

W = mg. (1.2.2)

Warning 1.2.1

The gravitational “constant” g varies up to about 0.5% across the earth’s
surface due to factors including latitude and elevation. On the moon, g is
about 1.625 m/s2, and it’s nearly zero in outer space.
Don’t assume that g always equals 9.81 m/s2! Always use the correct
value of g based on your location and unit system. However, in this course,
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unless otherwise stated, all objects are located on earth and the values in
Table 1.2.2 are applicable.

You can show that 1 lbm mass weighs 1 lbf on earth by first finding the
weight with (1.2.2) with g = 32.174 ft/s2, then applying the conversion factor
(1.2.1).

W = mg

= (1 lbm)(32.174 ft/s2)

=

(
����32.174

���lbm��ft
��s2

)[
1 lbf ·��s2

����32.174 ��ft ·���lbm

]
= 1 lbf

Table 1.2.2 shows the standard units of weight, mass, length, time, and
gravitational acceleration in three unit systems.
Table 1.2.2 Fundamental Units

Unit System Force Mass Length Time g (Earth)
SI N kg m s 9.81 m/s2

British Gravitational lbf slug ft s 32.174 ft/s2
English Engineering lbf lbm ft s 1 lbf/1 lbm

Example 1.2.3

How much does a 5 kg bag of flour weigh?
Hint. A value in kg is a mass. Weight is a force.
Solution.

W = mg

= 5 kg(9.81 m/s2)
= 49.05 N

Example 1.2.4

How much does a 5 lb bag of sugar weigh?
Hint. When someone says “pounds” they probably mean “pounds-force”.
Solution. The weight was given:

w = 5 lb = 5 lbf.
On earth, the mass is 5 lbm, or

m = 5 lbm
[

slug
32.174 lbm

]
= 0.155 slug
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using the conversion fractor in (1.2.1).

Thinking Deeper 1.2.5 Does 1 pound-mass equal 1 pound-force?

Of course not; they have completely different units!
Although a 1 lb mass weighs 1 lb on earth, pounds-mass and pounds-force
are not equal. If you take a 1 lbm mass to the moon, its mass doesn’t
change, but it weighs significantly less than it does on earth. The same
mass in deep space is weightless!

Awareness of units will help you prevent errors in your engineering calcula-
tions. You should always:

• Pay attention to the units of every quantity in the problem. Forces should
have force units, distances should have distance units, etc.

• Use the unit system given in the problem statement.

• Avoid unit conversions when possible. If you must, convert given values to
a consistent set of units and stick with them.

• Check your work for unit consistency. You can only add or subtract quan-
tities which have the same units. When multiplying or dividing quantities
with units, multiply or divide the units as well. The units of quantities on
both sides of the equals sign must be the same.

• Develop a sense of the magnitudes of the units and consider your answers
for reasonableness. A kilogram is about 2.2 times as massive as a pound-
mass and a newton weighs about a quarter pound.

• Be sure to include units with every answer.

1.3 Forces

Key Questions

• What are some of the fundamental types of forces used in statics?

• Why do we often simplify distributed forces with equivalent forces?

Statics is a course about forces and we will have a lot to say about them. At
its simplest, a force is a “push or pull,” but forces come from a variety of sources
and occur in many different situations. As such we need a specialized vocabulary
to talk about them. We are also interested in forces that cause rotation, and we
have special terms to describe these too.
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Some terms used to describe forces are given below; others will be defined as
needed later in the book.

Point Forces, also called concentrated forces, are forces that act at a
single point. Examples are the push you give to open a door, the thrust of a
rocket engine, or the pull a the chain suspending a wrecking ball. Point forces
are actually an idealization, because real forces always act over an area and not
at a mathematical point. However, point forces are the easiest type to deal with
computationally so we will usually represent other types of forces as equivalent
concentrated forces.

Distributed forces are forces that are spread out over a line, area or volume.
Steam pressure in a boiler and the weight of snow on a roof are examples of forces
distributed over an area. Distributed forces are represented graphically by an
array of force vectors.

Body forces are distributed forces acting over the volume of a body. The
most common body force is the body’s weight, but there are others including
buoyancy and forces caused by electric and magnetic fields. Weight and buoyancy
will be the only body forces we consider in this book.

In many situations, body forces are small in comparison to the other forces
acting on the object, and as such may be neglected. In practice, the decision
to neglect forces must be made on the basis of sound engineering judgment;
however, in this course you should consider the weight in your analysis if the
problem statement provides enough information to determine it, otherwise you
may ignore it.

Loads are the forces which an object must support in order to perform its
function. Loads can be either static or dynamic, however only static loads will
be considered here. Forces which hold a loaded object in equilibrium or hold
parts of an object together are not considered loads.

Reaction forces or simply reactions are the forces and moments which
hold or constrain an object or mechanical system in equilibrium. They are
called the reactions because they react when other forces on the system change.
If the load on a system increases, the reaction forces will automatically increase
in response to maintain equilibrium. Reaction forces are introduced in Chapter 3
and reaction moments are introduced in Chapter 5.

Internal forces are forces which hold the parts an object or system together.
Internal forces will be discussed in Chapter ??.

As an example of the various types of forces, consider a heavy crate being
pulled by a rope across a rough surface.
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(a) Pull - Concentrated force (b) Weight - Body force

(c) Friction - Distributed force (d) Normal Force - Distributed force

Figure 1.3.1 Forces on a crate being pulled across a rough surface.
The pull of the rope and the weight of the crate are loads. The rope applies

a force at a single point, so is a concentrated force. The force of the ground
holding the crate in equilibrium is a reaction force. This force can be divided
into two components: a tangential friction component which acts parallel to
the ground and resists the pull of the cable, and a normal component which
acts perpendicular to the bottom surface and supports the crate’s weight. The
normal and tangential components are distributed forces since they act over the
bottom surface area. The weight is also a distributed force, but one that acts
over the entire crate so it’s considered a body force. For computational simplicity
we usually model all these distributed forces as equivalent concentrated forces.
This process is discussed in Chapter 7.

1.4 Problem Solving

Key Questions

• What are some strategies to practice selecting a tool from your
problem-solving toolbox?

• What is the basic problem-solving process for equilibrium?

Statics may be the first course you take where you are required to decide on
your own how to approach a problem. Unlike your previous physics courses, you
can’t just memorize a formula and plug-and-chug to get an answer; there are
often multiple ways to solve a problem, not all of them equally easy, so before
you begin you need a plan or strategy. This seems to cause a lot of students
difficulty.
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The ways to think about forces, moments and equilibrium, and the mathe-
matics used to manipulate them are like tools in your toolbox. Solving statics
problems requires acquiring, choosing, and using these tools. Some problems can
be solved with a single tool, while others require multiple tools. Sometimes one
tool is a better choice, sometimes another. You need familiarity and practice to
get skilled using your tools. As your skills and understanding improve, it gets
easier to recognize the most efficient way to get a job done.

Struggling statics students often say things like:

“I don’t know where to start the problem.”
“It looks so easy when you do it.”
“If I only knew which equation to apply, I could solve the problem.”

These statements indicate that the students think they know how to use their
tools, but are skipping the planning step. They jump right to writing equations
and solving for things without making much progress towards the answer, or
they start solving the problem using a reasonable approach but abandon it in
mid-stream to try something else. They get lost, confused and give up.

Choosing a strategy gets easier with experience. Unfortunately, the way you
get that experience is to solve problems. It seems like a chicken and egg problem
and it is, but there are ways around it. Here are some suggestions which will
help you become a better problem-solver.

• Get fluent with the math skills from algebra and trigonometry.

• Do lots of problems, starting with simple ones to build your skills.

• Study worked out solutions, however don’t assume that just because you
understand how someone else solved a problem that you can do it yourself
without help.

• Solve problems using multiple approaches. Confirm that alternate ap-
proaches produce the same results, and try to understand why one method
was easier than the other.

• Draw neat, clear, labeled diagrams.

• Familiarize yourself with the application, assumptions, and terminology of
the methods covered in class and the textbook.

• When confused, identify what is confusing you and ask questions.

The majority of the topics in this book focus on equilibrium. The remaining
topics are either preparing you for solving equilibrium problems or setting you
up with skills that you will use in later classes. For equilibrium problems, the
problem-solving steps are:

1. Read and understand the problem.
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2. Identify what you are asked to find and what is given.

3. Stop, think, and decide on an strategy.

4. Draw a free-body diagram and define variables.

5. Apply the strategy to solve for unknowns and check solutions.

6. (a) Write equations of equilibrium based on the free-body diagram.
(b) Check if the number of equations equals the number of unknowns.

If it doesn’t, you are missing something. You may need additional
free-body diagrams or other relationships.

(c) Solve for unknowns.

7. Conceptually check solutions.

Using these steps does not guarantee that you will get the right solution, but
it will help you be critical and conscious of your chosen strategies. This reflection
will help you learn more quickly and increase the odds that you choose the right
tool for the job.



Chapter 2

Forces and Other Vectors

Before you can solve statics problems, you will need to understand the basic
physical quantities used in Statics: scalars and vectors.

Scalars are physical quantities that have no associated direction and can
be described by a positive or negative number, or even zero. Scalar quantities
follow the usual laws of algebra, and most scalar quantities have units. Mass,
time, temperature, and length are all scalars.

Vectors represent physical quantities that have magnitude and direction.
Vectors are identified by a symbolic name which will be typeset in bold like r or
F to indicate its vector nature. The primary vector quantity you will encounter
in statics will be force, but moment and position are also important vectors.
Computations involving vectors must always consider the directionality of each
term and follow the rules of vector algebra as described in this chapter.

2.1 Vectors

Key Questions

• How is a vector different than a scalar?

• How do you identify the tip, tail, line of action, direction, and mag-
nitude of any drawn vector?

• What are the standard notations for vectors and scalars in this text-
book?

• What is the difference between the sense and orientation of a vector?

15
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You can visualize a vector as an arrow
pointing in a particular direction. The
tip is the pointed end and the tail the
trailing end. The tip and tail of a vec-
tor define a line of action. A line
of action can be thought of as an in-
visible string along which a vector can
slide. Sliding a vector along its line of
action does not change its magnitude
or its direction. Sliding a vector can be
a handy way to simplify vector prob-
lems.

Stand-
alone
Embed

Figure 2.1.1 Vector Definitions

The standard notation for a vector uses the vector’s name in bold font, or
an arrow or bar above the vector’s name. All three of these notations mean the
same thing.

F = F⃗ = F̄ = a vector named F

Most printed works including this book will use the bold symbol to indicate
vectors, but for handwritten work, you and your instructor will use the bar or
arrow notation.

Force vectors acting on physical objects have a point of application, which
is the point where the force is applied. Other vectors, such as moment vectors,
are free vectors, which means that the point of application is not significant.
Free vectors can be moved freely to any location as long as the magnitude and
direction are maintained.

The vector’s magnitude is a positive real number including units which
describes the ‘strength’ or ‘intensity’ of the vector. Graphically a vector’s mag-
nitude is represented by the length of its vector arrow, and symbolically by
enclosing the vector’s symbol with vertical bars. This is the same notation as
for the absolute value of a number. The absolute value of a number and the
magnitude of a vector can both be thought of as a distance from the origin, so
the notation is appropriate. By convention the magnitude of a vector is also
indicated by the same letter as the vector, but in non-bold font.

F = |F| = the magnitude of vector F

By itself, a vector’s magnitude is a scalar quantity, but it makes no sense to
speak of a vector with a negative magnitude so vector magnitudes are always
positive or zero. Multiplying a vector by -1 produces a vector with the same
magnitude but pointing in the opposite direction.

Vector directions are described with respect to a coordinate system. A
coordinate system is an arbitrary reference system used to establish the origin
and the primary directions. Distances are usually measured from the origin, and
directions from a primary or reference direction. You are probably familiar
with the Cartesian coordinate system with mutually perpendicular x, y and z
axes and the origin at their intersection point.

http://engineeringstatics.org/ggb-1d-definitions_interactive.html
http://engineeringstatics.org/ggb-1d-definitions_interactive.html
http://engineeringstatics.org/ggb-1d-definitions_interactive-if.html
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Another way of describing a vector’s direction is to specify its orientation
and sense. Orientation is the angle the vector’s line of action makes with a
specified reference direction, and sense defines the direction the vector points
along its line of action. A vector with a positive sense points towards the positive
end of the reference axis and vice-versa. A vector representing an object’s weight
has a vertical reference direction and a downward sense or negative sense, for
example.

A third way to represent a vector is with a unit vector multiplied by a scalar
component. Unit vectors are vectors with a magnitude of one (unitless), and
scalar components are signed values with units. Together, they fully define a
vector quantity; the unit vector specifies the direction of its line of action, and
the scalar component specifies its magnitude and sense. The scalar component
“scales” the unit vector.

Be careful not to confuse scalar components, which can be positive or nega-
tive, with vector magnitudes, which are always positive.

Vectors are either constant or vary as a function of time, position, or some-
thing else. For example, if a force varies with time according to the function
F (t) = (10 N/s)t, where t is the time in seconds, then the force will be 0 N at
t = 0 s and increase by 10 N each second thereafter.

2.2 One-Dimensional Vectors

Key Questions

• Given two one-dimensional vectors, how do you compute and then
draw the resultant?

• What happens when you multiply a vector by a scalar?

The simplest vector calculations involve one-dimensional vectors. You can
learn some important terminology here without much mathematical difficulty.
In one-dimensional situations, all vectors share the same line of action, but may
point towards either end. If the line of action has a positive end like a coordinate
axis does, then a vector pointing towards that end will have a positive scalar
component.

2.2.1 Vector Addition
Adding multiple vectors together finds the resultant vector. Resultant vectors
can be thought of as the sum of or combination of two or more vectors.

To find the resultant vector R of two one-dimensional vectors A and B you
can use the tip-to-tail technique in Figure 2.1.1 below. In the tip-to-tail tech-
nique, you slide vector B until its tail is at the tip of A, and the vector from
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the tail of A to the tip of B is the resultant R. Note that vector addition is
commutative: the resultant R is the same whether you add A to B or B to A.

Standalone
Embed

Figure 2.2.1 One Dimensional Vector Addition

2.2.2 Vector Subtraction
The easiest way to handle vector subtraction is to add the negative of the vector
you are subtracting to the other vector. In this way, you can still use the tip-to-
tail technique after flipping the vector you are subtracting.

A− B = A + (−B) (2.2.1)

Example 2.2.2 Vector subtraction.

Find A− B where A = 2 i and B = 3 i.
Solution. You can simulate this in Figure 2.2.1.

1. Set A to a value of 2 i and B to a value of −3 i, the negative of its
actual value.

2. Move the vectors until they are tip-to-tail. The order does not matter
because vector addition is commutative.

R = −1 i.

2.2.3 Vector Multiplication by a Scalar
Multiplying or dividing a vector by a scalar changes the vector’s magnitude but
maintains its original line of action. One common transformation is to find the
negative of a vector. To find the negative of vector A, we multiply it by -1; in
equation form

−A = (−1)A
Spatially, the effect of negating a vector this way is to rotate it by 180°. The

magnitude, line of action, and orientation stay the same, but the sense reverses
so now the arrowhead points in the opposite direction.

http://engineeringstatics.org/ggb-1d-addition_interactive.html
http://engineeringstatics.org/ggb-1d-addition_interactive-if.html
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2.3 2D Coordinate Systems & Vectors

Key Questions

• Why are orthogonal coordinate systems useful?

• How do you transform between polar and Cartesian coordinates?

A coordinate system gives us a frame of reference to describe a system that
we would like to analyze. In statics we normally use orthogonal coordinate
systems, where orthogonal means “perpendicular.” In an orthogonal coordinate
system the coordinate direction are perpendicular to each other and thereby
independent. The intersection of the coordinate axes is called the origin, and
measurements are made from there. Both points and vectors are described with
a set of numbers called the coordinates. For points in space, the coordinates
specify the distance you must travel in each of the coordinate directions to get
from the origin to the point in question. Together, the coordinates can be
thought of as specifying a position vector, a vector from the origin directly
to the point. The position vector gives the magnitude and direction needed to
travel directly from the origin to the point.

In the case of force vectors, the coordinates are the scalar components of
the force in each of the coordinate directions. These components locate the tip
of the vector and they can be interpreted as the fraction of the total force which
acts in each of the coordinate directions.

Three coordinate directions are needed to map our real three-dimensional
world but in this section we will start with two, simpler, two-dimensional or-
thogonal systems: rectangular and polar coordinates, and the tools to convert
from one to the other.

2.3.1 Rectangular Coordinates
The most important coordinate system is the Cartesian system, which was
named after the French mathematician René Descartes. In two dimensions the
coordinate axes are straight lines rotated 90° apart named x, and y.

In most cases, the x axis is horizontal and points to the right, and the y
axis points vertically upward, however, we are free to rotate or translate this
entire coordinate system if we like. It is usually mathematically advantageous
to establish the origin at a convenient point to make measurements from, and
to align one of the coordinate axes with a major feature of the problem.

Points are specified as an ordered pair of coordinate values separated by a
comma and enclosed in parentheses, P = (x, y).



CHAPTER 2. FORCES AND OTHER VECTORS 20
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Figure 2.3.1 Cartesian Coordinate System
Similarly, forces and other vectors will be specified with an ordered pair of

scalar components enclosed by angle brackets,

F = ⟨Fx, Fy⟩.

2.3.2 Polar Coordinates
The polar coordinate system is an alternate orthogonal system which is useful
in some situations. In this system, a point is specified by giving its distance
from the origin r, and θ, an angle measured counter-clockwise from a reference
direction – usually the positive x axis.

In this text, points in polar coordinates will be specified as an ordered pair
of values separated by a semicolon and enclosed in parentheses

P = (r ; θ).

Angles can be measured in either radians or degrees, so be sure to include a
degree sign on angle θ if that is what you intend.

Standalone
Embed

Figure 2.3.2 Polar Coordinate System

http://engineeringstatics.org/ggb-rectangular-coordinates_interactive.html
http://engineeringstatics.org/ggb-rectangular-coordinates_interactive-if.html
http://engineeringstatics.org/ggb-polar-coordinates_interactive.html
http://engineeringstatics.org/ggb-polar-coordinates_interactive-if.html
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2.3.3 Coordinate Transformation
You should be able to translate points from one coordinate system to the other
whenever necessary. The relation between (x, y) coordinates and (r; θ) coordi-
nates are illustrated in the diagram and right-triangle trigonometry is all that is
needed to convert from one representation to the other.

Standalone
Embed

Figure 2.3.3 Coordinate Transformation

Rectangular To Polar for points (Given: x and, y).

r =
√

x2 + y2 (2.3.1)

θ = tan−1
(y
x

)
(2.3.2)

P = (r ; θ) (2.3.3)

Note 2.3.4

Take care when using the inverse tangent function on your calculator. Cal-
culator angles are always in the first or fourth quadrant, and you may need
to add or subtract 180° to the calculator angle to locate the point in the
correct quadrant.

Polar to Rectangular for points (Given: r and, θ).

x = r cos θ (2.3.4)
y = r sin θ (2.3.5)
P = (x, y) (2.3.6)

Rectangular To Polar for forces (Given: rectangular components). If
you are working with forces rather than distances, the process is exactly the
same but triangle is labeled differently. The hypotenuse of the triangle is the

http://engineeringstatics.org/ggb-r-to-p-to-r_interactive.html
http://engineeringstatics.org/ggb-r-to-p-to-r_interactive-if.html
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magnitude of the vector, and sides of the right triangle are the scalar components
of the force, so for vector A

A =
√
A2

x + A2
y (2.3.7)

θ = tan−1

(
Ay

Ax

)
(2.3.8)

A = (A ; θ) (2.3.9)

Polar to Rectangular for forces (Given: magnitude and direction).

Ax = A cos θ (2.3.10)
Ay = A sin θ (2.3.11)
A = ⟨Ax, Ay⟩ = A⟨cos θ, sin θ⟩ (2.3.12)

Example 2.3.5 Rectangular to Polar Representation.

Express point P = (−8.66, 5) in polar
coordinates.

Solution 1. Given: x = −8.66, y = 5

r =
√

x2 + y2 θ = tan−1
(y
x

)
=

√
(−8.66)2 + (5)2 = tan−1

(
5

−8.66

)
= 10 = tan−1(−0.577)

= −30◦

You must be careful here and use some common sense. The −30◦ angle
your calculator gives you in this problem is incorrect because point P is
in the second quadrant, but your calculator doesn’t know this. It can’t
tell whether the argument of tan−1(−0.577) is negative because the x was
negative or because the y was negative, so it must make an assumption
and in this case it is wrong.
The arctan function on calculators will always return values in the first
and fourth quadrant. If, by inspection of the x and the y coordinates, you
see that the point is in the second or third quadrant, you must add or
subtract 180◦ to the calculator’s answer.
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So in this problem, θ is really −30◦ +180◦. After making this adjustment,
the location of P in polar coordinates is:

P = (10; 150◦)

Solution 2. Most scientific calculators include handy polar-to-
rectangular and rectangular-to-polar functions that can save you time and
help you avoid errors. Perhaps you should google your calculator model1
to find out if yours does and learn how to use it?

Example 2.3.6 Polar to Rectangular Representation.

Express 200 N force F as a pair of
scalar components.

Solution 1. Given: The magnitude of force F = 200 N, and from the
diagram we see that the direction of F is 30◦ counter-clockwise from the
negative x axis.
Letting θ = 30◦ we can find the components of F with right triangle
trigonometry.

Fx = F cos θ Fy = F sin θ

= 200 N cos 30◦ = 200 N sin 30◦

= 173.2 N = 100 N

Since the force points down and to the left into the third quadrant, these
values are actually negative, and the signs must be applied manually.
After making this adjustment, the location of F expressed in rectangular
coordinates is:

F = ⟨−173.2 N,−100 N⟩

Solution 2. If you would prefer not to apply the negative signs by hand,
you can convert the 30◦ to an angle measured from the positive x axis
and let your calculator takes care of the signs. You may use either θ =
30◦ ± 180◦.

1google.com

https://letmegooglethat.com/?q=ti-83+rectangular+to+polar
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For θ = −150◦

Fx = F cos θ Fy = F sin θ

= 200 N cos(−150◦) = 200 N sin(−150◦)
= −173.2 N = −100 N

F = ⟨−173.2 N,−100 N⟩

Although this approach is mathematically correct, experience has shown
that it can lead to errors and we recommend that when you work with
right triangles, use angles between zero and 90◦, and apply signs manually
as required by the physical situation.

2.4 3D Coordinate Systems & Vectors

Key Questions

• What is a right-hand Cartesian coordinate system?

• What are direction cosine angles and why are they always less than
180°?

• How are spherical coordinates different than cylindrical coordinates?

In this section we will discuss four methods to specify points and vectors in
three-dimensional space.

The most commonly used method is an extension of two-dimensional rec-
tangular coordinates to three-dimensions. Alternately, points and vectors
in three dimensions can be specified in terms of direction cosines, or using
spherical or cylindrical coordinate systems. These will be discussed in the
following sections.

You will often need to convert from one representation to another. Good
visualization skills are helpful here.

2.4.1 Rectangular Coordinates
We can extend the two-dimensional Cartesian coordinate system into three di-
mensions easily by adding a z axis perpendicular to the two-dimensional Carte-
sian plane. The notation is similar to the notation used for two-dimensional
vectors. Points and forces are expressed as ordered triples of rectangular coordi-
nates following the same notation used previously.
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P = (x, y, z) F = ⟨Fx, Fy, Fz⟩

For nearly all three-dimensional problems, you will need the rectangular x, y,
and z locations of points in space and components of vectors before proceeding
with the computations. If you are given the components upfront, then you are
set to move forward, but otherwise, you will need to transform one coordinate
system into rectangular coordinates.

Standalone
Embed

Figure 2.4.1 Three-Dimensional Rectangular Coordinates

Thinking Deeper 2.4.2 Right Handed Coordinate Systems.

Does it matter which way the axes are oriented? Is it OK to make the x
axis point left or the y axis point down?
In one sense, it doesn’t matter at all. The
positive directions of the coordinate axes
are arbitrary. On the other hand, it’s con-
venient for everyone if we agree on a stan-
dard orientation. In mathematics and engi-
neering the default is a right-handed co-
ordinate system, where the coordinate
axes are oriented according to the right
hand rule shown in the figure.
To apply the right-hand rule, orient your
thumb and first two fingers at right angles
to each other and align them with three
coordinate axes. Starting with your thumb,
name your the axes in alphabetical order x-
y-z.

y
z

x

Figure 2.4.3 Right-handed
coordinate system.

These are the labels for the three axes and your fingers point in their
positive directions. If it is more convenient, you may name your thumb y

http://engineeringstatics.org/ggb_rectangular-coordinates-3d_interactive.html
http://engineeringstatics.org/ggb_rectangular-coordinates-3d_interactive-if.html
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or z, as long as you name the other two fingers in the same sequence y-
z-x or z-x-y.

2.4.2 Direction Cosine Angles
The direction of a vector in two-dimensional systems could be expressed clearly
with a single angle measured from a reference axis, but adding an additional
dimension means that one angle is no longer enough.

One way to define the direction of a three-dimensional vector is by using
direction cosine angles, also commonly known as coordinate direction an-
gles. The direction cosine angles are the angles between the positive x, y, and
z axes to a given vector and are traditionally named θx, θy, and θz. Three-
dimensional vectors, components, and angles are often difficult to visualize be-
cause they do not commonly lie in the Cartesian planes.
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Figure 2.4.4 Direction Cosine Angles
We can relate the components of a vector to its direction cosine angles using

the following equations.

cos θx =
Ax

|A|
cos θy =

Ay

|A|
cos θz =

Az

|A|
(2.4.1)

Note the component in the numerator of each direction cosine equation is pos-
itive or negative as defined by the coordinate system, and the vector magnitude
in the denominator is always positive. From these equations, we can conclude
that:

• Direction cosines are signed value between -1 and 1.

• Direction cosine angles must always be between 0◦ and 180◦ or

0◦ ≤ θn ≤ 180◦.

http://engineeringstatics.org/direction-cosines-3d_interactive.html
http://engineeringstatics.org/direction-cosines-3d_interactive-if.html
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• Any direction cosine angle greater than 90◦ indicates a negative component
along that respective axis. Spatially this is because all direction cosine
angles are measured from the positive side of each axis. Mathematically
this is because the cosine of any angle between 90 and 180 degrees is
numerically negative.

Example 2.4.5 Direction Cosine Angles.

x

y

z

A rope pulls on an anchor ring cen-
tered at the origin with force F =
⟨20,−30, 60⟩ lbf.
Find the magnitude of F and the di-
rection cosine angles, θx, θy, and θz
components.

Solution. Since the three components of F are perpendicular, we can
apply the Pythagorean Theorem to find the magnitude of F .

F = |F| =
√

Fx
2 + Fy

2 + Fz
2

=

√
202 + (−30)2 + 602 lbf

= 70 lbf

Direction cosine angles are equal to the inverse cosine of each Cartesian
force component divided by the force magnitude.

θx = cos−1

(
Fx

|F|

)
= cos−1

(
20

70

)
= 73.4◦

θy = cos−1

(
Fy

|F|

)
= cos−1

(
−30
70

)
= 115.38◦

θz = cos−1

(
Fz

|F|

)
= cos−1

(
60

70

)
= 31.0◦
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Since the direction cosine angles are measured from the positive x, y, and
z axes, the negative component of Fy means that θy > 90◦, while both θx
and θz are less than 90◦ as their components are positive.

2.4.3 Spherical Coordinates
In spherical coordinates, points are specified with these three coordinates

• r, the radial distance from the origin to the tip of the vector,

• θ, the azimuthal angle, measured counter-clockwise from the positive x
axis to the projection of the vector onto the xy plane, and

• ϕ, the polar angle from the z axis to the vector.
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Figure 2.4.6 Spherical Coordinate System

http://engineeringstatics.org/ggb_spherical-coordinates_interactive.html
http://engineeringstatics.org/ggb_spherical-coordinates_interactive-if.html
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Question 2.4.7

What are the differences between polar coordinates and terrestrial lati-
tude/longitude locations?
Answer. In terrestrial measurements

• Coordinate r is not needed since all points are on the surface of the
globe.

• Longitude is measured 0◦ to 180◦ East or West of the prime meridian,
rather than 0◦ to 360◦ counter-clockwise from the x axis.

• Latitude is measured 0◦ to 90◦ North or South of the equator,
whereas polar angle ϕ is 0◦ to 180◦ measured from the “North Pole”.

When vectors are specified using cylindrical coordinates the magnitude of the
vector is used instead of distance r from the origin to the point.

When the two given spherical angles are defined in the manner shown here,
the rectangular components of the vector A = (A ; θ ;ϕ) are found thus:

A′ = A sinϕ (2.4.2)
Az = A cosϕ (2.4.3)
Ax = A′ cos θ = A sinϕ cos θ (2.4.4)
Ay = A′ sin θ = A sinϕ sin θ (2.4.5)

Reflect on the equations above. Can you think through the process of how
they were derived? The generalized steps are as follows. First, draw an accurate
sketch of the given information and define the right triangles related to both θ
and ϕ. Then use trig identities on the right triangle involving the vector, the
z axis and angle ϕ to find Az, and A′, the projection of A onto the xy plane.
Finally, use trig identities on the right triangle involving vector A′ and θ to find
the remaining components of A.
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Example 2.4.8 Spherical Coordinates.

x

y

z

A rope pulls on an anchor ring cen-
tered at the origin with force F =
⟨20,−30, 60⟩ lbf.
Find the spherical coordinates of F.

Solution. To represent F in spherical coordinates, we must find the ra-
dial distance r, the azimuthal angle θ, and the polar angle ϕ.
Coordinate r is simply the magnitude of force F. Since the three compo-
nents of F are perpendicular, we can apply the Pythagorean Theorem to
find it.

F = |F| = r =
√

F 2
x + F 2

y + F 2
z

=

√
202 + (−30)2 + 602 lbf

= 70 lbf
Azimuthal angle θ measures the angle between the x axis and the projec-
tion of F onto the xy plane, Fzy.
Using a right triangle with sides Fx, Fy, and Fxy, we can find θ using the
inverse tangent of the ratio of the opposite to adjacent sides.
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θ = tan−1 Fy

Fx

= tan−1

(
−30
20

)
= −56.31◦

This angle is negative because it is measured clockwise from the positive
x axis, opposite the standard CCW direction.
The polar angle ϕ is measured down from the +z axis to the vector F. We
can find it using a right triangle with sides F , Fz, and Fxy. Note that ϕ is
the same as the direction cosine angle θz.

ϕ = θz = cos−1 Fz

|F| = cos−1

(
60

70

)
= 31.0◦

Also notice that the azimuthal angle θ is smaller than the direction cosine
angle θx, since θ is in the xy plane, but θx is a 3D angle from the x axis
to the vector F.

2.4.4 Cylindrical Coordinates
The cylindrical coordinate system is seldom used in statics, however, it is useful
in certain geometries. Cylindrical coordinates extend two-dimensional polar co-
ordinates by adding a z coordinate indicating the distance above or below the
xy plane.

Points are specified with these three cylindrical coordinates.

• r, the radius of the cylinder. This is the distance from the origin to the
projection of the tip of the vector onto the xy plane,

• θ, the azimuthal angle, measured counter-clockwise from the positive x
axis to the projection of the vector onto the xy plane

• z, the vertical height of the vector tip.
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Figure 2.4.9 Cylindrical Coordinate System
Unfortunately, not all problems give the angles θ and ϕ as defined here; so you
will need to find them from the given angles in other situations.

You can use the interactive diagram in this section to practice visualizing and
finding the components of a vector in all of these coordinate systems. You should
be able to find the x, y, and z coordinates given direction angles, spherical or
cylindrical coordinates, and vice-versa.

Example 2.4.10 Cylindrical Coordinates.

x

y

z

A rope pulls on an anchor ring cen-
tered at the origin with force F =
⟨20,−30, 60⟩ lbf.
Find the cylindrical coordinates of F.

Solution. To represent F in cylindrical coordinates, we must find the
radial distance, r, the azimuthal angle, θ, and the axial coordinate, z.
In cylindrical coordinates, r is the radius of the cylinder rather than the
radius of the enclosing sphere. r is the projection of F onto the xy plane,
Fxy, and can be found by applying the Pythagorean Theorem to the x and
y components of F.

http://engineeringstatics.org/ggb_cylindrical-coordinates_interactive.html
http://engineeringstatics.org/ggb_cylindrical-coordinates_interactive-if.html
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r = Fxy =
√
F 2
x + F 2

y

=

√
202 + (−30)2 lbf

= 36.06 lbf

The azimuthal angle θ is the same in both cylindrical and spherical coor-
dinates. It measures the angle between the x axis and the projection of F
onto the xy plane. θ can be found using a right triangle in the xy plane
with sides Fx and Fy.

θ = tan−1 Fy

Fx

= tan−1

(
−30
20

)
= −56.31◦

Finally, the z component is the vertical component of the force, Fz, which
was given.

Fz = 60.0 lbf

2.5 Unit Vectors

Key Questions

• Why are unit vectors useful?

• What are the unit vectors along the Cartesian x, y, and z axes?

• How do you find the force vector components of known force magni-
tude along a geometric line?

• How can you find unit vector components from direction cosine an-
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gles?

A unit vector is a vector with a magnitude of one and no units. As such, a
unit vector represents a pure direction. By convention, a unit vector is indicated
by a hat over a vector symbol. This may sound like a new concept, but it’s a
simple one, directly related to the unit circle, the Pythagorean Theorem, and
the definitions of sine and cosine.

2.5.1 Cartesian Unit Vectors
A unit vector can point in any direction, but because they occur so frequently
the unit vectors in each of the three Cartesian coordinate directions are given
their own symbols, which are:

• i, for the unit vector pointing in the x direction,

• j, for the unit vector pointing in the y direction, and

• k, for the unit vector pointing in the z direction..

Stand-
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Figure 2.5.1 Unit Vector Interactive
Applying the Pythagorean Theorem to the triangle gives the equation for a

unit circle

cos2 θ + sin2 θ = 12

No matter what angle a unit vector makes with the x axis, cos θ and sin θ
are its scalar components. This relation assumes that the angle θ is measured
from the x axis, if it is measured from the y axis the sine and cosine functions
reverse, with sin θ defining the horizontal component and the cos θ defining the
vertical component.

The x and y components of a point on the unit circle are also the scalar
components of F̂, so

Fx = cos θ
Fy = sin θ

}
=⇒ F̂ = ⟨cos θ, sin θ⟩.

http://engineeringstatics.org/ggb_unit_circle_interactive.html
http://engineeringstatics.org/ggb_unit_circle_interactive.html
http://engineeringstatics.org/ggb_unit_circle_interactive-if.html
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2.5.2 Relation between Vectors and Unit Vectors
When a purely-directional unit vector is multiplied by a scalar value it is scaled by
that amount. For example, when a unit vector pointing to the right is multiplied
by 100 N the result is a 100 N vector pointing to the right. When a unit vector
pointing up is multiplied by −50 N, the negative magnitude flips the direction
of the unit vector and the result is a 50 N vector pointing down.

In general,
F = |F| F̂, (2.5.1)

where |F| is the magnitude of vector F, and F̂ is the unit vector pointing in the
direction of F.

Solving equation (2.5.1) for F̂ gives the approach to find the unit vector of
known vector F.

The process is straightforward— divide the vector by its magnitude.

F̂ =
F
|F| (2.5.2)

To emphasize that unit vectors are pure direction, recall that vectors con-
sist of both a magnitude and direction, so when we divide a vector by its own
magnitude we are just left with direction.

unit vector = F
|F| =

[vector]
[magnitude] =

((((((([magnitude] · [direction]
((((((([magnitude] = [direction]

This interactive shows vector F, its associated unit vector F̂, and expressions
for F in terms of its unit vector F̂.

Standalone
Embed

Figure 2.5.2 Unit Vectors

Example 2.5.3 Find unit vector of a force.

Find the unit vector corresponding to a 100 N force at 60° above the
positive x-axis.
Solution. In polar coordinates, the unit vector is a vector of magnitude
1, pointing in the same direction as the force, so, by inspection

F = (100 N ; 60°)

http://engineeringstatics.org/ggb_unit_vector_interactive.html
http://engineeringstatics.org/ggb_unit_vector_interactive-if.html
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F̂ = (1 ; 60°)

In rectangular coordinates, first express F in terms of its x and y compo-
nents.

Fx = F cos 60°
Fy = F sin 60°

}
=⇒ F = ⟨F cos 60°, F sin 60°⟩.

F̂ =
F
F

=
⟨100 N cos 60°, 100 N sin 60°⟩

100 N = ⟨cos 60°, sin 60°⟩

2.5.3 Force Vectors from Position Vectors
Unit vectors are generally the best approach when working with forces and dis-
tances in three dimensions.

For example, when the locations of two points on the line of action of a
force are known, the unit vector of the line of action can be found and used
to determine the components of the force acting along that line. This can be
accomplished as follows, where A and B are points on the line of action.

1. Use the problem geometry to find AB, the displacement vector from point
A to point B.
You can either subtract the coordinates of the starting point A from the
coordinates of the destination point B,

A = (Ax, Ay, Az)

B = (Bx, By, Bz)

AB = (Bx − Ax) i + (By − Ay) j + (Bz − Az) k, or

or, write the displacements directly by noting the change in the x, y, and
z coordinates when moving from A to B.

ABx = ∆x = Bx − Ax

ABy = ∆y = ABy = By − Ay

ABz = ∆z = Bz − Ax

AB = ABx i + ABy j + ABz k

The result is the same with either method.

2. Find the distance between point A and point B using the Pythagorean
Theorem. This distance is also the magnitude of AB or |AB|.

|AB| =
√

(ABx)2 + (ABy)2 + (ABz)2
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3. Find ÂB, the unit vector from A to B, by dividing vector AB by its
magnitude. This is a unitless vector with a magnitude of 1 which points
from A to B.

ÂB =

〈
ABx

|AB| ,
ABy

|AB| ,
ABz

|AB|

〉
4. Finally, multiply the magnitude of the force by the unit vector ÂB to get

force FAB.

FAB = FAB ÂB

= FAB

〈
ABx

|AB| ,
ABy

|AB| ,
ABz

|AB|

〉
The interactive below can be used to visualize the displacement vector and

its unit vector, and practice this procedure.

Standalone
Embed

Figure 2.5.4 Unit Vectors in Space

Example 2.5.5 Component in a Specified Direction.

Determine the components of a 5 kN force F acting at point A, in the
direction of a line from A to B. Given: A = (2, 3,−2.1) m and B =
(−2.5, 1.5, 2.2) m
We will take the solution one step at a time.

(a) Draw a good diagram.
Hint. The interactive in Figure 2.5.4 may be useful for this prob-
lem.

(b) Find the displacement vector from A to B.
Answer.

AB = ⟨−4.5,−1.5, 4.3⟩ m

Solution.
AB = (Bx − Ax) i + (By − Ay) j + (Bz − Az) k

http://engineeringstatics.org/ggb_3d-direction-vector_interactive.html
http://engineeringstatics.org/ggb_3d-direction-vector_interactive-if.html
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= [(−2.5− 2) i + (1.5− 3) j + (2.2− (−2.1)) k] m
= (−4.5i− 1.5j + 4.3k) m
= ⟨−4.5,−1.5, 4.3⟩ m

(c) Find the magnitude of the displacement vector.

Answer.

|AB| = 6.402 m

Solution.

|AB| =
√

(∆x)2 + (∆y)2 + (∆z)2

=
√

(−4.5)2 + (−1.5)2 + 4.32 m2

=
√
40.99 m2

= 6.402 m

(d) Find the unit vector pointing from A to B.

Answer.

ÂB = ⟨−0.7,−0.23, 0.67⟩

Solution.

ÂB =

〈
∆x

|AB| ,
∆y

|AB| ,
∆z

|AB|

〉
=

〈
−4.5
6.402

,
−1.5
6.402

,
4.3

6.402

〉
ÂB = ⟨−0.7,−0.23, 0.67⟩

(e) Find the force vector.

Answer.

FAB = ⟨−3.51,−1.17, 3.36⟩ kN

Solution.

FAB = FAB ÂB
= 5 kN ⟨−0.7,−0.23, 0.67⟩
= ⟨−3.51,−1.17, 3.36⟩ kN
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Given the properties of unit vectors, there are some conceptual checks you
can make after computing unit vector components which can prevent subsequent
errors.

• The signs of unit vector components need to match the signs of the original
position vector. A unit vector has the same line of action and sense as the
position vector but is scaled down to one unit in magnitude.

• Components of a unit vector must be between -1 and 1. If the magnitude
of a unit vector is one, then it is impossible for it to have rectangular
components larger than one.

2.5.4 Unit Vectors and Direction Cosines
If you look closely at the right side of equation (2.4.1), you will see that each
equation consists of a component divided by the total vector magnitude. These
are the same equations just used to find unit vectors. Thus, the cosine of each
direction cosine angle collectively also computes the components of the unit
vector; hence we can write an equation for Â,i.e., the unit vector along A.

Â = cos θx i + cos θy j + cos θz k

Combining the Pythagorean Theorem with our knowledge of unit vectors and
direction cosine angles gives this result: if you know two of the three direction
cosine angles you can manipulate the following equation to find the third.

cos2 θx + cos2 θy + cos2 θz = 1 (2.5.3)

2.6 Vector Addition

Key Questions

• How do you set up vectors for graphical addition using the Triangle
Rule?

• Does it matter which vector you start with when using the Triangle
Rule?

• Why can you separate a two-dimensional vector equation into two
independent equations to solve for up to two unknowns?

• If you and another student define vectors using different direction
coordinate systems, will you end up with the same resultant vector?

• What is the preferred technique to add vectors in three-dimensional
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systems?

In this section we will look at several different methods of vector addition.
Vectors being added together are called the components, and the sum of the
components is called the resultant vector.

These different methods are tools for your statics toolbox. They give you
multiple different ways to think about vector addition and to approach a problem.
Your goal should be to learn to use them all and to identify which approach will
be the easiest to use in a given situation.

2.6.1 Triangle Rule of Vector Addition
All methods of vector addition are ultimately based on the tip-to-tail method
discussed in a one-dimensional context in Subsection 2.2.1. There are two ways
to draw or visualize adding vectors in two or three dimensions, the Triangle
Rule and Parallelogram Rule. Both are equivalent.

• Triangle Rule.
Place the tail of one vector at the tip of the other vector, then draw the
resultant from the first vector’s tail to the final vector’s tip.

• Parallelogram Rule.
Place both vectors’ tails at the origin, then complete a parallelogram with
lines parallel to each vector through the tip of the other. The resultant is
equal to the diagonal from the tails to the opposite corner.

The interactive below shows two forces A and B pulling on a particle at the
origin, and the appropriate diagram for the triangle or parallelogram rule. Both
approaches produce the same resultant force R as expected.

Standalone
Embed

Figure 2.6.1 Vector Addition Methods

2.6.2 Graphical Vector Addition
Graphical vector addition involves drawing a scaled diagram using either the
parallelogram or triangle rule, and then measuring the magnitudes and directions

http://engineeringstatics.org/ggb_2d-addition-views_interactive.html
http://engineeringstatics.org/ggb_2d-addition-views_interactive-if.html
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from the diagram. Graphical solutions work well enough for two-dimensional
problems where all the vectors live in the same plane and can be drawn on a
sheet of paper, but are not very useful for three-dimensional problems unless
you use technology.

If you carefully draw the triangle accurately to scale and use a protractor and
ruler you can measure the magnitude and direction of the resultant. However,
your answer will only be as precise as your diagram and your ability to read your
tools. If you use technology such as GeoGebra or a CAD program to make the
diagram, your answer will be precise. The interactive in Figure 2.6.1 may be
useful for this.

Even though the graphical approach has limitations, it is worth your atten-
tion because it provides a good way to visualize the effects of multiple forces,
to quickly estimate ballpark answers, and to visualize the diagrams you need to
use alternate methods to follow.

2.6.3 Trigonometric Vector Addition
You can get a precise answer from the triangle or parallelogram rule by

1. drawing a quick diagram using either rule,

2. identifying three known sides or angles,

3. using trigonometry to solve for the unknown sides and angles.

The trigonometric tools you will need are found in Appendix ??.
Using triangle-based geometry to solve vector problems is a quick and pow-

erful tool, but includes the following limitations:

• There are only three sides in a triangle; thus vectors can only be added
two at a time. If you need to add three or more vectors using this method,
you must add the first two, then add the third to that sum and so on.

• If you fail to draw the correct vector triangle or identify the known sides
and angles, you will not find the correct answer.

• The trigonometric functions produce scalar values. You can use them to
find the magnitudes the angles between vectors, but the results are not,
by themselves, vectors.

When you need to find the resultant of more than two vectors, it is generally
best to use the algebraic methods described below.

2.6.4 Orthogonal Components
Any arbitrary two-dimensional vector F can be broken into two component vec-
tors which are the sides of a parallelogram having F as its diagonal. The process
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of finding components of a vector in particular directions is called vector reso-
lution. While a vector can be resolved into components in any two directions,
it’s generally most useful to resolve them into rectangular or orthogonal com-
ponents, where the parallelogram is a rectangle and the components are perpen-
dicular.

There are an infinite number of possible rectangles to choose from, so each
vector has an infinite number of sets of orthogonal components. However, the
most important set occurs when the sides of the rectangle are parallel to the x
and y axes. These orthogonal components are given x and y subscripts indicate
that they’re aligned with the coordinate axes. For vector F,

F = Fx + Fy = Fx i + Fy j, (2.6.1)

where Fx and Fy are the scalar components of F. The advantage of this choice
of components is that vector calculations can be replaced with ordinary algebric
calculation on scalar values for each orthogonal direction.

Alternately, you may rotate the coordinate system to any other convenient
angle, and find the components in the directions of the rotated coordinate axes
x′ and y′. In either case, the vector is the sum of the rectangular components

F = Fx + Fy = Fx′ + Fy′ . (2.6.2)

The interactive below can help you visualize the relationship between a vector
and its components in both the x-y and x′-y′ directions.

Standalone
Embed

Figure 2.6.2 Orthogonal Components

2.6.5 Algebraic Addition of Components
While the parallelogram rule and the graphical and trigonometric methods are
useful tools for visualizing and finding the sum of two vectors, they are not par-
ticularly suited for adding more than two vectors or working in three dimensions.

http://engineeringstatics.org/ggb_orthogonal-components_interactive.html
http://engineeringstatics.org/ggb_orthogonal-components_interactive-if.html
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Consider vector R which is the sum of several vectors A, B, C and perhaps
more. Vectors A, B and C are the components of R, and the R is the resultant
of A,B and C.

It is easy enough to say that R = A + B + C, but how can we calculate R?
You could draw the vectors arranged tip-to-tail and then use the triangle rule
to add the first two components, then use it again to add the third component
to that sum, and so forth until all the components have been added. The final
sum is the resultant, R. The process gets progressively more tedious the more
components there are to sum.

This section introduces an alternate method to add multiple vectors which
is straightforward, efficient and robust. This is called algebraic method, because
the vector addition is replaced with a process of algebraic addition of scalar
components. The algebraic technique works equally well for two and three-
dimensional vectors, and for summing any number of vectors.

To find the sum of multiple vectors using the algebraic method:
1. Find the scalar components of each component vector in the x and y

directions using the P to R procedure described in Subsection 2.3.3.

2. Algebraically sum the scalar components in each coordinate direction. The
scalar components will be positive if they point right or up, negative if they
point left or down. These sums are the scalar components of the resultant.

3. Resolve the resultant’s components to find the magnitude and direction
of the resultant vector using the R to P procedure described in Subsec-
tion 2.3.3.

The resultant FR is the simply the algebraic sum of the components in each
coordinate direction.

FR = ΣFx i + ΣFy j + ΣFz k
or in bracket notation

FR = ⟨ΣFx,ΣFy,ΣFz⟩ . (2.6.3)
This process is illustrated in the following interactive diagram and in the

next example.

Standalone
Embed

Figure 2.6.3 Vector addition by summing rectangular components.

http://engineeringstatics.org/ggb_rect_components_add_interactive.html
http://engineeringstatics.org/ggb_rect_components_add_interactive-if.html
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Example 2.6.4 Vector Addition.

Vector A = 200 N∠ 45◦ counter-clockwise from the x axis, and vector
B = 300 N ∠70◦ counter-clockwise from the y axis.
Find the resultant R = A + B by addition of scalar components.
Solution.

Use the given information to draw a sketch
of the situation. By imagining or sketching
the parallelogram rule, it should be apparent
that the resultant vector points up and to the
left.

Ax = 200 N cos 45◦ = 141.4 N Bx = −300 N sin 70◦ = −281.9 N
Ay = 200 N sin 45◦ = 141.4 N By = 300 N cos 70◦ = 102.6 N

Rx = Ax +Bx Ry = Ay +By

= 141.4 N− 281.9 N = 141.4 N + 102.6 N
= −140.5 N = 244.0 N

R =
√
R2

x +R2
y = 281.6 N θ = tan−1

(
Ry

Rx

)
= −60.1◦

This answer indicates that the resultant points down and to the left, which
is odd because the parallelogram rule shows that the resultant should point
up and to the left.
This occurs because the calculator always returns angles in the first or
fourth quadrant for tan−1. To get the actual direction of the resultant,
add 180◦ to the calculator result.

θ = −60.1◦ + 180◦ = 119.9◦

The final answer for the magnitude and direction of the resultant is

R = 281.6 N∠119.9◦

measured counter-clockwise from the x axis.

The process for adding three-dimensional vectors is exactly the same, except
that the z component is included as well. This interactive allows you to input the
three-dimensional vector components of forces A and B and view the resultant
force R which is the sum of A and B.



CHAPTER 2. FORCES AND OTHER VECTORS 45

Standalone
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Figure 2.6.5 Vector Addition in Three Dimensions

2.6.6 Vector Subtraction
Like one-dimensional vector subtraction, the easiest way to handle two-dimensional
vector subtraction is by taking the negative of a vector followed by vector addi-
tion. Multiplying a vector by -1 preserves its magnitude but flips its direction,
which has the effect of changing the sign of the scalar components.

A− B = A + (−B)

After negating the second vector you can choose any technique you prefer for
vector addition.

2.7 Dot Products

Key Questions

• What are dot products used for?

• What does it mean when the dot product of two vectors is zero?

• How do you use a dot product to find the angle between two vectors?

• What does it mean when the scalar component of the projection
∥ projA B∥ is negative?

Unlike ordinary algebra where there is only one way to multiply numbers,
there are two distinct vector multiplication operations: dot product and the
cross product. Alternately, the first is referred to as the scalar product
because its result is a scalar, and the second as the vector product because its
result is a vector. The dot product and its applications will be discussed in this
section and the cross product in the next.

http://engineeringstatics.org/ggb_3d-addition_interactive.html
http://engineeringstatics.org/ggb_3d-addition_interactive-if.html
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2.7.1 Calculation of the Dot product
For two vectors A = ⟨Ax, Ay, Az⟩ and B = ⟨Bx, By, Bz⟩, the dot product multi-
plication is computed by summing the products of the components.

A · B = AxBx + AyBy + AzBz (2.7.1)

It can be shown that an alternate, equivalent method to compute the dot
product is

A · B = |A||B| cos θ = A B cos θ (2.7.2)
where θ in the equation is the angle between the two vectors and |A| and |B| are
the magnitudes of A and B.

We can conclude from the second equation that the dot product of two per-
pendicular vectors is zero, because cos 90◦ = 0, and that the dot product of two
parallel vectors equals the product of their magnitudes.

When dotting unit vectors that have a magnitude of one, the dot products
of a unit vector with itself is one and the dot product two perpendicular unit
vectors is zero, so for i, j, and k we have

i · i = 1 j · i = 0 k · i = 0

i · j = 0 j · j = 1 k · j = 0

i · k = 0 j · k = 0 k · k = 1

Dot products are commutative, associative and distributive:

1. Commutative. The order does not matter.

A · B = B ·A (2.7.3)

2. Associative. It does not matter whether you multiply a scalar value C
by the final dot product, or either of the individual vectors, you will still
get the same answer.

C (A · B) = (C A) · B = A · (C B) (2.7.4)

3. Distributive. If you are dotting one vector A with the sum of two more
(B+C), you can either add B+C first, or dot A by both and add the final
value.

A · (B + C) = (A · B) + (A · C) (2.7.5)

Dot products can be used to compute the magnitude of a vector, determine
the angle between two vectors, and find the rectangular component or projection
of a vector in a specified direction. These applications will be discussed in the
following sections.
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2.7.2 Magnitude of a Vector
Dot products can be used to find vector magnitudes. When a vector is dotted
with itself using (2.7.1), the result is the square of the magnitude of the vector.
(Recall that |A| and A are alternate notations for the magnitude of vector A.)

A ·A = |A|2 = A2. (2.7.6)

The proof is trivial. By the definition of the dot product (2.7.1) and the
Pythagorean theorem:

A ·A = AxAx + AyAy

= A2
x + A2

y = A2

= |A|2

Taking the square root of each side gives the magnitude of A
√

A ·A = A = |A|. (2.7.7)

The result is similar for three-dimensional vectors.

Example 2.7.1 Find Vector Magnitude using the Dot Product.

Find the magnitude of vector F with components Fx = 30 N, Fy = −40 N
and Fz = 50 N
Solution.

F = ⟨30 N,−40 N, 50 N⟩

F · F = F 2
x + F 2

y + F 2
z

= (30 N)2 + (−40 N)2 + (50 N)2

= 5000 N2

F = |F| =
√

F · F
=
√
5000 N2

= 70.7 N

2.7.3 Angle between Two Vectors
A second application of the dot product is to find the angle between two vectors.
Equation (2.7.2) provides the procedure.

A · B = |A||B| cos θ

cos θ =
A · B
|A||B| (2.7.8)
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Example 2.7.2 Angle between Orthogonal Unit Vectors.

Find the angle between i = ⟨1, 0, 0⟩ and j = ⟨0, 1, 0⟩.
Solution.

cos θ =
i · j
|i||j|

=
(1)(0) + (0)(1) + (0)(0)

(1)(1)

= 0

θ = cos−1(0)

= 90◦

This shows that i and j are perpendicular to each other.

Example 2.7.3 Angle between Two Vectors.

Find the angle between F = ⟨100 N, 200 N,−50 N⟩ and G =
⟨−75 N, 150 N,−40 N⟩.
Solution.

cos θ =
F ·G
|F||G|

=
FxGx + FyGy + FzGz√

F 2
x + F 2

y + F 2
z

√
G2

x +G2
y +G2

z

=
(100)(−75) + (200)(150) + (−50)(−40)√

1002 + 2002 + (−50)2
√
(−75)2 + 1502 + (−40)2

=
24500

(229.1)(172.4)

= 0.620

θ = cos−1(0.620)

= 51.7◦

2.7.4 Vector Projection
The dot product is used to find the projection of one vector onto another. You
can think of a projection of B on A as a vector the length of the shadow of B
on the line of action of A when the sun is directly above A. More precisely, the
projection of B onto A produces the rectangular component of B in the direction
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parallel to A. This is one side of a rectangle aligned with A, having B as its
diagonal.

This is illustrated in Figure 2.7.4, where u is the projection of B onto A, or
alternately u is the rectangular component of B in the direction of A.

In this text we will use the symbols

• projA B to mean the vector projection of B on A

• | projA B| to mean the magnitude of the vector projection, a positive or
zero-valued scalar, and

• ∥ projA B∥ to mean the scalar projection. This value represents the
component of B in the A direction, and can have a positive, zero, or
negative value.

As we have mentioned before, the magnitude of a vector is its length and is
always positive or zero, while a scalar component is a signed value that can be
positive or negative. When a scalar component is multiplied by a unit vector
the result is a vector in that direction when the scalar component is positive, or
180◦ opposite when the scalar component is negative.

Standalone
Embed

Figure 2.7.4 Vector projection in two dimensions.
The interactive shows that the projection is the adjacent side of a right

triangle with B as the hypotenuse. From the definition of the dot product (2.7.2)
we find that

A · B = A(B cos θ) = A ∥ projA B∥, (2.7.9)
where B cos θ is the scalar component of the projection. So, the dot product of
A and B gives us the projection of B onto A times the magnitude of A. This
value will be positive when θ < 90◦, negative when θ > 90◦, and zero when the
vectors are perpendicular because of the properties of the cosine function.

So, to find the scalar value of the projection of B onto A we divide by the
magnitude of A.

∥ projA B∥ = A · B
A

=
A
A
· B = Â · B (2.7.10)

where Â =
A
A

is the unit vector in the dirction of A.

http://engineeringstatics.org/ggb_2d-dot-product_interactive.html
http://engineeringstatics.org/ggb_2d-dot-product_interactive-if.html
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If you want the vector projection of B onto A, as opposed to the scalar
projection we just found, multiply the scalar projection by the unit vector Â.

projA B = ∥ projA B∥Â =
(

Â · B
)

Â (2.7.11)

Similarly, the vector projection of A onto B is

projB A = ∥ projB A∥B̂ =
(

A · B̂
)

B̂ (2.7.12)

The spatial interpretation of the results the scalar projection ∥ projA B∥ is

• Positive values mean that A and B are generally in the same direction.

• Negative values mean that A and B are generally in opposite directions.

• Zero means that A and B are perpendicular.

• Magnitude smaller than B This is the most common answer. This means
that the vectors are neither parallel nor perpendicular.

• Magnitude equal to B means that the vectors point in the same direction,
and all of B acts in the direction of A.

• Magnitude larger than B This answer is impossible. Check your algebra;
you might have forgotten to divide by the magnitude of A.
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Figure 2.7.5 Vector projections in three dimensions.

2.7.5 Perpendicular Components
The final application of dot products is to find the component of one vector
perpendicular to another.

http://engineeringstatics.org/ggb_3d-dot_product_interactive.html
http://engineeringstatics.org/ggb_3d-dot_product_interactive-if.html
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To find the component of B perpendic-
ular to A, first find the vector projec-
tion of B on A, then subtract that from
B. What remains is the perpendicular
component.

B⊥ = B− projA B (2.7.13)

Figure 2.7.6 Perpendicular and paral-
lel components of B.

Example 2.7.7 Dot Products.

A cable pulls with tension T = ⟨−50, 80, 40⟩ N on a 0.4 m long anchor AB
embedded in a concrete wall. The anchor lies in the xy plane at an angle
α = 30◦ from the x axis.

30°

x

y

z

A
B

T=<-50,80,40> N

0.4 m
anchor

For the system above, compute the following:

(a) Find the dot product of the cable tension T and the anchor AB

Answer.
T ·AB = −33.32 N·m
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Solution. When you know the magnitudes and angle between two
vectors, it is easiest to use the second dot product equation (2.7.2),
but in this case it will be easier to find the components of AB and
use (2.7.1).

T = ⟨−50, 80, 40⟩ N
AB = ⟨0.4 cos 30◦,−0.4 sin 30◦, 0⟩ m

= ⟨0.3464,−0.2, 0⟩ m

T ·AB = Tx (ABx) + Ty (ABy) + Tz (ABz)

= (−50 N) (0.3464 m) + (80 N) (−0.2 m) + (40 N) (0 m)

= −33.32 N·m

The units of a dot product are the product of the units of the two
vectors.

(b) Find the angle θ between the cable tension T and the anchor AB.

Answer.
θ = 144.38◦

Solution. With the dot product T ·AB known from the previous
step, we can use the (2.7.2) to find the angle between force T and
anchor.

T ·AB = |T||AB| cos θ = −33.32 N·m

The magnitude of |AB| = 0.4 m was given but we need to calculate
the magnitude of |T|,

|T| =
√

(−50)2 + 802 + 402 = 102.47 N

θ = cos−1 T ·AB
|T||AB|

= cos−1 −33.32 N·m
(102.47 N) (0.4 m)

= 144.38◦

Note that θ > 90◦ correctly corresponds to the negative dot product
and indicates that the two vectors generally oppose each other.



CHAPTER 2. FORCES AND OTHER VECTORS 53

(c) Find the scalar projection of the the cable tension T onto the anchor
AB.

Answer.
|| projAB T|| = −83.30 N

Solution 1. Recall from Subsection 2.7.4 that the scalar projection
is the scalar component of one vector in the direction of another, in
other words, how much of one vector is parallel to another. This is
one of the most direct and practical applications of the dot product.
The dot product of T with AB gives the product of the length of the
anchor AB and the scalar projection of the tension in the direction
of the anchor.

T ·AB = AB (T cos θ) = AB∥ projAB T∥

and has units of N-m.
To find the projection, divide the dot product by the magnitude of
AB

∥ projAB T∥ = T ·AB
AB

=
−33.32 N��m

0.4 ��m
= −83.30 N

Solution 2. Alternately, you can apply (2.7.10) and calculate the
calculate the dot product of force vector T with the unit vector ÂB.
First, find the unit vector

ÂB =
AB
AB

=
⟨0.3464,−0.2, 0⟩ m

0.4 m = ⟨0.866,−0.5, 0⟩

Or, since AB is in the xy plane with its direction defined by the
α = 30◦, the unit vector ÂB is found

ÂB = ⟨cos 30◦,− sin 30◦, 0⟩ = ⟨0.866,−0.5, 0⟩.

Then find the projection

∥ projAB T∥ = T · ÂB
= (−50 N) (0.866) + (80 N) (−0.5) + (40 N) (0)

= −83.30 N

(d) Find the vector projection of the cable tension T onto the anchor
AB.
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Answer.
projAB T = ⟨−72.14, 41.65, 0⟩ N

Solution. The vector projection is the scalar projection value mul-
tiplied by a unit direction vector to turn it a vector. So we multiply
the scalar projection with the unit vector of ÂB to compute the
vector projection of T onto AB.

projAB T = ∥ projAB T∥ · ÂB
= 83.301 N (⟨0.866,−0.5, 0⟩)
= ⟨−72.14, 41.65, 0⟩ N

(e) Find the vector portion of cable tension T perpendicular to the an-
chor AB.

Answer.
T⊥AB = ⟨22.14, 38.35, 40⟩ N

Solution. Recall that a two-dimensional vector can be represented
by the sum of two perpendicular components. In the same way, a
right triangle can be represented by a vector along the hypotenuse
equal to the sum of the two right-triangle sides.
Thus, any vector can be divided into two vectors parallel and per-
pendicular to another line. The vector projection projAB T, from
Part (d), is the portion of T parallel to AB. So the sum of T can be
expressed as the parallel and perpendicular terms:

T = projAB T + (T ⊥ AB)

We want to find the part of T perpendicular to AB, so we can re-
arrange the equation to find:

T ⊥ AB = T− projAB T
= ⟨−50, 80, 40⟩ − ⟨−72.14, 41.65, 0⟩
= ⟨22.14, 38.35, 40⟩ N

Nice effort if you worked through all the parts of this example. Graphically
the results for parts (b), (d), and (e) are shown in this diagram.
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2.8 Cross Products

Key Questions

• How is a cross product different than a dot product?

• What is a determinant?

• What defines a right-handed Cartesian coordinate system?

• How do you use the cross-product circle to find the cross product of
two unit vectors?

The vector cross product is a multipliation operation applied to two vectors
which produces a third mutually perpendicular vector as a result. It’s sometimes
called the vector product to emphasize this and to distinguish it from the dot
product which produces a scalar result. The × symbol is used to indicate this
operation.

Cross products are used in mechanics to find the moment of a force about a
point.
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Figure 2.8.1 Direction of a cross product.
The cross product is a vector multiplication process defined by

A× B = A B sin θ û. (2.8.1)

The result is a vector mutually perpendicular to both with a sense determined
by the right-hand rule. If A and B are in the xy plane, this is

A× B = (AyBx − AxBy) k. (2.8.2)

The operation is not commutative, in fact reversing the order introduces a neg-
ative sign.

A× B = −B×A.
The magnitude of the cross product is the product of the perpendicular

component of A with the magnitude of B,. This is the area of the parallelogram
formed by vectors A and B. The magnitude of the cross product is zero if A and
B are parallel, and it is maximum when they are perpendicular. The magnitude
of the cross product of two perpendicular unit vectors is one.

Notice that the cross product equation are similar to the dot product, except
that sin is used rather than cos and the product includes a unit vector û making
the result a vector. This unit vector û is simple to find in a two-dimensional
problem as it will always be perpendicular to the page, but for three-dimensional
cross products a vector determinant is used, as discussed in Subsection 2.8.3.

2.8.1 Direction of the Vector Cross Product
The direction of a cross product is determined by the right-hand rule. There
are two ways to apply the right-hand rule, the three-finger method, and the
point-and-curl method. You don’t need both, but you will need to master at
least one to find the direction of cross products.

The three-finger method uses the fact that your extended index finger, middle
finger, and thumb are all roughly mutually perpendicular. If you align your index

http://engineeringstatics.org/ggb_cross-product_interactive.html
http://engineeringstatics.org/ggb_cross-product_interactive-if.html
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finger with the first vector and your middle finger with the second, then your
thumb will point in the direction of the cross product. Alternately, if you align
your thumb with the first vector and your index finger with the second, your
middle finger will point in the direction of the cross-product.

1st

2nd

cross
product

(a) Technique 1

1st

2nd
cross
product

(b) Technique 2

Figure 2.8.2 Right-hand rule using three fingers.
The point-and-curl method involves placing your right hand flat with your

fingertips pointing in the direction of the the first vector. Then rotate your
hand until the second vector is can curl your fingers around your thumb. In this
position, your thumb defines the direction of the cross product.

1st

2nd

(a) Step one

1st

2nd

cross
product

(b) Step one
Figure 2.8.3 Right-hand rule using the point-and-curl technique.

2.8.2 Cross Product of Unit Vectors
The Figure 2.8.4(a) demonstrates how you apply these techniques to find the
cross product of i× j. Assuming the x axis points right and the y axis points up,
the cross product points in the positive z direction. Recalling that the magnitude
of the cross product of two peperpedicular unit vectors is one, we conclude that

i× j = k.

(a) Using the three-finger method. (b) Using the point-and-curl method.

Figure 2.8.4 Crossing i into j to get k.
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Similarly, the cross products of the other pairs of vectors are:

i× i = 0 i× j = k i× k = −j
j× i = −k j× j = 0 j× k = i
k× i = j k× j = −i k× k = 0

An alternate way to remember this is to use the
cross-product circle shown. For example when
you cross i with j you are going in the positive
(counter-clockwise) direction around the blue in-
ner circle and thus the answer is +k. But when
you cross j into i you go in the negative (clock-
wise) direction around the circle and thus get a
−k. Remember that the order of cross products
matter. If you put the vectors in the wrong or-
der you will introduce a sign error. Figure 2.8.5 Unit vector

cross product circle.
If you have any negative unit vectors it is easiest to pull out the negative

signs before you take the cross product, like the following.

−j× i = (−1) (j× i) = (−1)(−k) = +k

2.8.3 Cross Product of Arbitrary Vectors
The cross product of two arbitrary three-dimensional vectors can be calculated
by evaluating the determinant of this 3× 3 matrix.

A× B =

∣∣∣∣∣∣
i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (2.8.3)

Here, the first row contains the unit vectors, the second row contains the
components of A, and the third row, the components of B. The determinant of
this 3× 3 matrix is evaluated using the method of cofactors, as follows

A× B = +

∣∣∣∣Ay Az

By Bz

∣∣∣∣ i−
∣∣∣∣Ax Az

Bx Bz

∣∣∣∣ j +
∣∣∣∣Ax Ay

Bx By

∣∣∣∣ k. (2.8.4)

Each term contains a 2× 2 determinant which is evaluated with the formula∣∣∣∣a b

c d

∣∣∣∣ = ad− bc. (2.8.5)
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After simplifying, the resulting formula for a three-dimensional cross product
is

A× B = (AyBz − AzBy) i− (AxBz − AzBx) j + (AxBy − AyBx) k. (2.8.6)

In practice, the easiest way to remember this equation is to use the aug-
mented determinant below, where the first two columns have been copied and
placed after the determinant. The cross product is then calculated by adding
the product of the red diagonals and subtracting the product of blue diagonals.
The result is identical to (2.8.6).

Figure 2.8.6 Augmented determinant
In two dimensions, vectors A and B have no z components, so (2.8.6) reduces

to

A× B =

∣∣∣∣∣∣
i j k
Ax Ay 0

Bx By 0

∣∣∣∣∣∣ = (AxBy − AyBx) k. (2.8.7)

This equation produces the same result as equation (2.8.1) and you may use it
if it is more convenient.

Example 2.8.7 2D Cross Product.

The two vectors A and B shown lie in the xy plane. Determine the cross
product A× B.

P

Solution 1. In this solution we will apply equation (2.8.1).

A× B = A B sin θ û

The direction of the cross product is determined by applying the right-
hand rule. With the right hand, rotating A towards B we find that our
thumb points into the xy plane, so the direction of û is −k.

A× B = (60 N)(40 N) sin 45◦(−k)
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= 1, 697 N2 (−k)
= −1, 697 N2 k

Solution 2. In this solution we will use (2.8.7).
First, establish a coordinate system with the origin P and with the x axis
aligned with A, then find the rectangular components and apply the cross
product equation.

Ax = 60 N Ay = 0 N
Bx = 40 N cos 45◦ By = −40 N sin 45◦

= 28.28 N = −28.28 N

A× B = (AxBy − AyBx)k
= (60)(−28.28)− (0)(28.28) N2k
= −1697 N2 k

Example 2.8.8 3D Cross Product.

Find the cross product of A = ⟨2, 4,−1⟩ m and B = ⟨10, 25, 20⟩ N.
Here, we are crossing a distance A and with a force B. This calculation
is equivalent to finding the moment about a point P caused by force B
acting distance A from P . You will learn about moments in Chapter 4.
Solution 1. To solve, set up the augmented determinant and evaluate
it by adding the left-to-right diagonals and subtracting the right-to-left
diagonals using equation (2.8.6).

A× B =

∣∣∣∣∣∣
i j k
2 4 −1
10 25 20

∣∣∣∣∣∣
i j
2 4

10 25

= (4 · 20) i + (−1 · 10) j + (2 · 25) k− (4 · 10) k− (−1 · 25) i− (2 · 20) j
= (80 + 25) i + (−10− 40) j + (50− 40) k
= ⟨105,−50, 10⟩ N·m

Thus, the force B creates a three-dimensional rotational moment equal to
⟨105,−50, 10⟩ N·m.

Solution 2. Calculating three-dimensional cross products by hand is
tedious and error-prone. Whenever you can, you should use technology to
do the grunt work for you and focus on the meaning of the results. In this
solution, we will use an embedded Sage calculator to calculate the cross
product. This same calculator can be used to do other problems.
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Given:

A = ⟨2, 4,−1⟩ m
B = ⟨10, 25, 20⟩ N.

A and B are defined in the first two lines, and A.cross_product(B) is the
expression to be evaluated. Click Evaluate to see the result. You’ll have
to work out the correct units for yourself.

A = vector ([2, 4, -1]);
B = vector ([10, 25, 20]);
A.cross_product(B)

(-105, -50, 10)

Try changing the third line to B.cross_product(A). What changes?
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2.9 Exercises (Ch. 2)

Standalone

http://engineeringstatics.org/numbas-chapter-2.html


Chapter 3

Equilibrium of Particles

3.1 Equilibrium
Engineering statics is the study of rigid bodies in equilibrium so it’s appropri-
ate to begin by defining what we mean by rigid bodies and what we mean by
equilibrium.

A body is an object, possibly made up of many parts, which may be ex-
amined as a unit. In statics, we consider the forces acting on the object as a
whole and also examine it in greater detail by studying each of its parts, which
are bodies in their own right. The choice of the body is an engineering decision
based on what we are interested in finding out. We might, for example, consider
an entire high-rise building as a body for the purpose of designing the building’s
foundation, and later consider each column and beam of the structure to ensure
that they are strong enough to perform their individual roles.

A rigid body is a body that doesn’t deform under load, that is to say, an
object which doesn’t bend, stretch, or twist when forces are applied to it. It
is an idealization or approximation because no objects in the real world behave
this way; however, this simplification still produces valuable information. You
will drop the rigid body assumption and study deformation, stress, and strain
in a later course called Strength of Materials or Mechanics of Materials. In that
course, you will perform analysis of non-rigid bodies, but each problem you do
there will begin with the rigid body analysis you will learn to do here.

A body in equilibrium is not accelerating. As you learned in physics, ac-
celeration is velocity’s time rate of change and is a vector quantity. For linear
motion,

a =
dv
dt

.

For an object in equilibrium a = 0 which implies that the body is either
stationary or moving with a constant velocity

a = 0 =⇒

{
v = 0

v = C
.

64
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The acceleration of an object is related to the net force acting on it by
Newton’s Second Law

ΣF = ma.
So for the special case of static equilibrium Newton’s Law becomes

ΣF = 0. (3.1.1)

This simple equation is one of the two foundations of engineering statics.
There are several ways to think about this equation. Reading it from left to

right it says that if all the forces acting on a body sum to zero, then the body
will be in equilibrium. If you read it from right to left it says that if a body is
in equilibrium, then all the forces acting on the body must sum to zero. Both
interpretations are equally valid but we will be using the second one more often.
In a typical problem equilibrium of a body implies that the forces sum to zero,
and we use that fact to find the unknown forces which make it so. Remember
that we are talking about vector addition here, so the sums of the forces must
be calculated using the rules of vector addition; you won’t get correct answers if
you can’t add vectors!

We’ll be using all of the different vector addition techniques introduced in
Section 2.6, which may lead to some confusion. It doesn’t matter, mathemati-
cally, which technique you use but part of the challenge and reward of statics is
learning to select the best tool for the job at hand; to select the simplest, easiest,
fastest, or clearest way to get to the solution. You’ll do best in this course if can
use multiple approaches to solve the same problem.

In Chapter 5 we will add another requirement for equilibrium, namely equi-
librium equation (5.3.2) which says the forces which cause rotational motion
and angular acceleration α also must sum to zero, but for the problems of this
chapter the only condition we’ll need for equilibrium is ΣF = 0.

3.2 Particles
We’ll begin our study of Equilibrium with the simplest possible object in the
simplest possible situation — a particle in a one-dimensional coordinate
system. Also, in this chapter and the next all forces will be represented as
concentrated forces. In later sections, we will address more complicated situ-
ations, higher dimensions, and distributed forces, but beginning with very simple
situations will help you to develop engineering sense and problem-solving skills
which will be useful later.

The defining characteristic of a particle is that all forces that act on it are
coincident1 or concurrent2, not that it is small. Forces are coincident if they have
the same line of action, and concurrent if they intersect at a point. The moon,
earth and sun can all be treated as particles, but we probably won’t encounter

1Two lines are coincident when one lies on top of the other.
2Two or more lines are concurrent if they intersect at a single point.
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them in statics since they’re not in equilibrium. Forces are coincident/concurrent
if their lines of action all intersect at a single, common point. Two or more
forces are also considered concurrent if they share the same line of action. One
practical consequence of this is that particles are never subjected to forces that
cause rotation. So a see-saw, for example, is not a particle because the weights
of the children tend 3 to cause rotation.

Another consequence of concurrent forces is that Equation (3.1.1) is the only
equilibrium equation that applies. This vector equation can be used to solve for
a maximum of one unknown per dimension. If you find yourself trying to solve
a two-dimensional particle equilibrium problem and you are seeking more than
two unknowns, it’s likely that you have missed something and need to re-read
the question.

Another simplification we will be making is to treat all forces as concen-
trated. Concentrated forces act at a single point, have a well-defined line of
action, and can be represented with an arrow — in other words, they are vectors.
Real forces don’t actually act at a single mathematical point but concentrating
them is intuitive and will be justified in a later chapter ??. You’re already fa-
miliar with the concept if you have ever placed all the weight of an object at its
center of gravity.

3.3 1D Particle Equilibrium

3.3.1 A simple case
Consider the weight suspended by a rope shown in Figure 3.3.1. Diagrams of
this type are called space diagrams; they show the objects as they exist in
space.

In mechanics we are interested in studying the forces acting on objects and in
this course, the objects will be in equilibrium. The best way to do this is to draw
a diagram that focuses on the forces acting on the object, not the mechanisms
that hold it in place. We call this type of diagram a free-body diagram because
it shows the object disconnected or freed from its supporting mechanisms. You
can see the free-body diagram for this situation by moving the slider in the
interactive to position two. This shows that there are two forces acting on the
object; the force of the rope holding it up, and the weight of the object which is
trying to pull it to earth, which we treat as acting at its center of gravity.

3We say “tend to cause rotation” because in a static’s context, all objects are static — so
no actual rotation occurs.
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The actual shape of the weight is
not important to us, so it can sim-
ply be represented with a dot, as
shown when the view control is in
position three. The forces have been
slid along their common line of ac-
tion until they both act on the dot,
which is an example of an equivalent
transformation called the “Principle
of Transmissibility.” This diagram
in view three is completely sufficient
for this situation.

W

Space Diagram

Stand-
alone
Embed

Figure 3.3.1 A suspended weight

Drawing free-body diagrams can be surprisingly tricky. The reason for this is
that you must identify all the forces acting on the object and correctly represent
them on the free-body diagram. If you fail to account for all the forces, include
additional ones, or represent them incorrectly, your analysis will surely be wrong.

So what kind of analysis can we do here? Admittedly not much. We can
find the tension in the rope caused by a particular weight and use it to select an
appropriately strong rope, or we can determine the maximum weight a particular
rope can safely support.

The actual analysis is so trivial that you’ve probably already done it in your
head, nevertheless several ways to approach it will be shown next.

In the vector approach we will use the equation of equilibrium.

Example 3.3.2 1D Vector Addition.

Find the relationship between the tension in the rope and the suspended
weight for the system of Figure 3.3.1.
Solution.
The free-body diagram shows two forces acting on the
particle, and since the particle is in equilibrium they
must add to zero.

ΣF = 0

T + W = 0

T = −W
We conclude that force T is equal and opposite to W, that is, since the
weight is acting down, the rope acts with the same magnitude but up.
Tension is the magnitude of the rope’s force. Recall that the magnitude
of a vector is always a positive scalar. We use normal (non-bold) typefaces
or absolute value bars surrounding a vector to indicate its magnitude. For
any force F,

F = |F|.

http://engineeringstatics.org/ggb_weight_interactive.html
http://engineeringstatics.org/ggb_weight_interactive.html
http://engineeringstatics.org/ggb_weight_interactive-if.html
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To find how the tension is related to W, take the absolute value of both
sides

|T| = | −W|
T = W

We can also formulate this example in terms of unit vectors. Recall that
j is the unit vector that points up. It has a magnitude of one with no units
associated. So in terms of unit vector j, T = T j and W = −W j.

Example 3.3.3 1D Vector Addition using unit vectors.

Find the relation between the tension T and weight W for the system of
Figure 3.3.1 using unit vectors.
Solution.
Express the forces in terms of their magnitudes and the
unit vector j then proceed as before,

ΣF = 0

T + W = 0

T j +W (−j) = 0

T ��j = W ��j
T = W

In the previous example, the unit vector j completely dropped out of the
equation leaving only the coefficients of j. This will be the case whenever you
add vectors which all act along the same line of action.

The coefficients of i, j, and k are known as the scalar components. A scalar
component times the associated unit vector is a force vector.

When you use scalar components, the forces are represented by scalar values
and the equilibrium equations are solved using normal algebraic addition rather
than vector addition. This leads to a slight simplification of the solution as
shown in the next example.

Example 3.3.4 1D Vector Addition using scalar components.

Find the relation between the tension T and weight W for the system of
Figure 3.3.1 using scalar components.
Solution.
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The forces in this problem are W = −W j and T = T j,
so the corresponding scalar components are

Wy = −W Ty = T .

Adding scalar components gives,

ΣFy = 0

Wy + Ty = 0

−W + T = 0

T = W

Unsurprisingly, we get the same result.

3.3.2 Scalar Components
The scalar component of a vector is a signed number which indicates the vector’s
magnitude and sense, and is usually identified by a symbol with a subscript
which indicates the line of action of the vector.

So for example, Fx = 10 N is a scalar component. We can tell it’s not a
vector because it Fx is not bold. 10 N is the magnitude of the associated vector;
the subscript x indicates that the force acts “in the x direction,” in other words
it acts on a line of action which is parallel to the x axis; and the (implied)
positive sign means that the vector points towards the positive end of the x axis

— towards positive infinity. So a scalar component, while not a vector, contains
all the information necessary to completely describe and draw the corresponding
vector. Be careful not to confuse scalar components with vector magnitudes. A
force with a magnitude of 10 N can point in any direction, but can never have a
negative magnitude.

Scalar components can be added together algebraically, but only if they act
“in the same direction.” It makes no sense to add Fx to Fy. If that’s what you
want to do, first you must convert the scalar components to vectors, then add
them according to the rules of vector addition.

Example 3.3.5 1D Scalar Addition.

If Ax = 10 lb and Bx = −15 lb, find the magnitude and direction of their
resultant R.
Solution. Start by sketching the two forces. The subscripts indicate the
line of action of the force, and the sign indicates the direction along the
line of action. A negative Bx points towards the negative end of the x
axis.
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R = Ax +Bx

= 10 lb +−15 lb
= −5 lb

R is the scalar component of the resultant R.
The negative sign on the result indicates that the resultant force acts to
the left.

Example 3.3.6 2D Scalar Addition.

If Fx = −40 N and Fy = 30 N, find the magnitude and direction of their
resultant F.
Solution. In this example the scalar components have different sub-
scripts indicating that they act along different lines of action, and this
must be accounted for when they are added together.
Make a sketch of the two vectors and add them using the parallelogram
rule. In this case, the parallelogram is a rectangle, so right-triangle trig is
appropriate.

F =
√
F 2
x + F 2

y

=
√

(−40 N)2 + (30 N)2

= 50 N

θ = tan−1

∣∣∣∣Fy

Fx

∣∣∣∣
= tan−1

∣∣∣∣ 30 N
−40 N

∣∣∣∣
= 36.9◦

θ is measured from the negative x axis. The direction of F from the positive
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x axis is (180◦ − θ) = 143.1◦, so

F = 50 N at 143.1◦∡

3.3.3 Two-force Bodies
As you might expect from the name, a two-force body is a body with two
forces acting on it, like the weight just discussed. As we just saw, in order for a
two-force body to be in equilibrium the two forces must add to zero. There are
only three possible ways that this can happen:

The two forces must either

• share the same line of action, have the same magnitude, and point away
from each other, or

• share the same line of action, have the same magnitude, and point towards
each other, or

• both forces have zero magnitude.

When two forces have the same magnitude but act in diametrically opposite
directions, we say that they are equal-and-opposite. When equal and opposite
forces act on an object and they point towards each other we say that the object
is in compression, when they point away from each other the object is in
tension. Tension and compression describe the internal state of the object.

Figure 3.3.7 Examples of two-force bodies
Did you notice that last three examples in Figure 3.3.7 did not include the

object’s weight? These are simplifictions that ignore the object’s weight to make
them two-force bodies. If the object’s weight was included, it would be a three-
force body. This approximation is justifiable when the object’s weight is small
in comparison with the tensile or compressive forces. In this case, we say that
the weight is negligable, i.e. small enough to neglect. Also note that all these
examples show single forces acting at each point. If several forces act at a point,
they should be combined into a single resultant force acting there.
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Two force bodies appear frequently in multipart structures and machines
which will be covered in Chapter 6. Some examples of two force bodies are
struts and linkages, ropes, cables and guy wires, and springs.

Thinking Deeper 3.3.8 Locating the Center of Gravity.

As we will see in Chapter 7, the center of gravity is the point where all
the weight of an object can be considered to be concentrated.
An object suspended by a cable or a frictionless pin is a two-force body.
When hung freely it will naturally rotate until its center of gravity lies
directly beneath the support point to ensure that the lifting force and the
weight share the same line of action. This means that the center of gravity
of an object can be found by suspending it from several different points,
and noting intersection of lines drawn straight down from the hook (like
a plumb bob).
In practical terms, to safely lift a heavy object with a chain fall or crane,
you must always ensure that the hook is directly above the center of gravity
before hoisting the load. The load will be unstable if lifted from any other
point.
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Example 3.3.9 Tug of War.

Marines and Airmen at Goodfellow Air Force Base are competing in a tug
of war and have reached a stalemate. The Marines are pulling with a force
of 1500 lb. How hard are the Airmen pulling? What is the tension in the
rope?

http://engineeringstatics.org/two_force_cg_interactive.html
http://engineeringstatics.org/two_force_cg_interactive-if.html
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This is a simple question, but students often get it wrong at first.
Solution.

1. Assumptions.
A free-body diagram of the rope is shown.

Figure 3.3.10
We’ll solve this with scalar components because there’s no need for
the additional complexity of the vector approaches in this simple
situation.
We’ll align the x axis with the rope with positive to the right as
usual to establish a coordinate system.
Assume that the pull of each team can be represented by a single
force. Let force M be supplied by the Marines and force A by the
Airmen; call the tension in the rope T .
Assume that the weight of the rope is negligible; then the rope can
be considered a particle because both forces lie along same line of
action.

2. Givens.
M = 1500 lb.

3. Procedure.
Since they’re stalemated we know that the rope is in equilibrium.
Applying the equation of equilibrium gives:

ΣFx = 0

−M + A = 0
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A = M

= 1500 lb

We find out that both teams pull with the same force. This was
probably obvious without drawing the free-body diagram or solving
the equilibrium equation.
It may seem equally obvious that if both teams are pulling with
1500 lb in opposite directions that the tension in the rope must be
3000 lb. This is wrong however.
The tension in the rope T is an example of an internal force and
in order to learn its magnitude we need a free-body diagram which
includes force T . To expose the internal force we take an imaginary
cut through the rope and draw (or imagine) a free-body diagram of
either half of the rope.

Figure 3.3.11
The correct answer is easily seen to be T = A = M = 1500 lb.

Example 3.3.12 Hanging Weight.

The wire spool being lifted into the truck
consists of 750 m of three strand medium
voltage (5 kV) 1/0 AWG electrical power
cable with a 195 amp capacity at 90°C,
weighing 927 kg/km, on a 350 kg steel
reel.
How much weight is supported by the
hook and high tension polymer lifting
sling?

Solution. The entire weight of the wire and the spool is supported by
the hook and sling.
Remember that weight is not mass and mass is not force. The total weight
is found by multiplying the total mass by the gravitational constant g.

W = mg

= (mw +ms) g

= ((0.75 km)(927 kg/km) + 350 kg) g
= (1045 kg)(9.81 m/s2)
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= 10300 N

Question 3.3.13

How can we apply the principles of mechanics in the two previous examples
if the rope and the sling are clearly not “rigid bodies?”
Answer. They are not rigid, but they are inextensible and in tension.
Under these conditions they don’t change shape, so we can treat them as
rigid. If the force were to change direction and put either into compression,
our assumptions and analysis would fail. That is why “tug of war” involves
pulling and not pushing.

3.3.4 General Procedure
The general procedure for solving one, two, or three-dimensional particle equilib-
rium problems is essentially the same. Start with the 5-step method for creating
a free-body diagram and solve for your unknowns using your equilibrium equa-
tions.

Draw a Free-Body Diagram

1. Select and isolate the particle. The “free-body” in free-body diagram means
that a concurrent force particle or connection must be isolated from the
supports physically holding it in place. This means creating a separate
free-body diagram from your problem sketch.

2. Establish a coordinate system. This step is simple for one-dimensional
problems: just label a positive direction for the forces.

3. Identify all loads. Include force vectors on your free-body diagram repre-
senting each applied load pushing or pulling the body, in addition to the
body’s weight, if it is non-negligible. Every vector should have a descriptive
variable name and a clear arrowhead indicating its direction.

4. Identify all reactions. Reactions represent the resistance of the physical
supports you cut away by isolating the body in step 1. All particle supports
are two-force members that result in tension or compression forces. Label
each reaction with a descriptive variable name and a clear arrowhead.

5. Label the diagram. Verify that every force is labeled with either a value
or a symbolic name if the value is unknown. Your final free-body diagram
should be a stand-alone presentation and is the basis of your equilibrium
equations.

Create and Solve Equilibrium Equations
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1. Write the equilibrium equation. Now represent your free-body diagram as
an equilibrium equation. Your computation should start with the govern-
ing equation, like ΣF = 0.

2. Solve for unknown. Use algebra to simplify the equilibrium equation and
solve for the unknown value. Write the unit of your answer. All answers in
engineering have units unless you prove that they don’t. Finally, underline
or box your answers.

3. Check your work. Do the results seem reasonable given the situation?
Have you included appropriate units?

3.4 2D Particle Equilibrium

3.4.1 Introduction
In this section we will study situations where everything of importance occurs
in a two-dimensional plane and the third dimension is not involved. Studying
two-dimensional problems is worthwhile because they illustrate all the important
principles of engineering statics while being easier to visualize and less mathe-
matically complex.

We will normally work in the “plane of the page,” that is, a two-dimensional
Cartesian plane with a horizontal x axis and a vertical y axis discussed in Sec-
tion 2.3 previously. This coordinate system can represent either the front, side,
or top view of a system as appropriate. In some problems it may be worthwhile
to rotate the coordinate system, that is, to establish a coordinate system
where the x and y axes are not horizontal and vertical. This is usually done to
simplify the mathematics by avoiding simultaneous equations.

3.4.2 General Procedure
The general procedure for solving two-dimensional particle equilibrium is a step
up from solving Subsection 3.3.1, as you now need to find equilibrium in two
independent directions. The major difference is that you must carefully find
each independent vector component and then solve for the equilibrium in each
component direction. The process follows the same five-step method for creating
a free-body diagram, followed by steps to solve your equilibrium equations.

Draw a Free-Body Diagram:

1. Select and isolate the particle. The “free-body” in free-body diagram means
that a concurrent force particle or connection must be isolated from the
supports that are physically holding it in place. This means creating a
separate free-body diagram from your problem sketch.
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2. Establish a coordinate system. Draw a right-handed coordinate system to
use as a reference for your equilibrium equations. Look ahead and select a
coordinate system that minimizes the number of force components. This
will simplify your vector algebra. The choice is technically arbitrary, but
a good choice will simplify your calculations and reduce your effort.

3. Identify all loads. Add force vectors to your free-body diagram representing
each applied load pushing or pulling the body, in addition to the body’s
weight, if it is non-negligible. If a force vector has a known direction, draw
it. If its direction is unknown, assume one, and your later algebra will
check your assumption. Every vector should have a descriptive variable
name and a clear arrowhead indicating its direction.

4. Identify all reactions. Reactions represent the resistance of the physical
supports you cut away by isolating the body in step 1. All particle supports
are some type of two-force members with tension or compression reaction
forces. These reactions will all be concurrent with the body loads from
Step 2. Label each reaction with a descriptive variable name and a clear
arrowhead. Again, if a vector’s direction is unknown, just assume one.

5. Label the diagram. Verify that every dimension, angle, force, and moment
is labeled with either a value or a symbolic name if the value is unknown.
In our eyes, dimensioning is optional. Having the information needed
for your calculations is helpful, but don’t clutter the diagram up with
unneeded details. Your final free-body diagram should be a stand-alone
presentation and is the basis of your equilibrium equations.

Create and Solve Equilibrium Equations

1. Break vectors into components. Compute each force’s x and y components
using right-triangle trigonometry.

2. Write equilibrium equations. Now represent your free-body diagram as two
equilibrium equations, ΣFx = 0 and ΣFy = 0.

3. Count knowns and unknowns. At this point, you should have at most two
unknown values. If you have more than two, reread the problem and look
for overlooked information.

4. Solve for unknowns. Use algebra to simplify the equilibrium equations
and solve for unknowns. All answers in Statics will have units - unless you
have solved for a dimensionless value, like a friction coefficient. Finally,
underline or box your answers.

5. Check your work. If you add the components of the forces, do they add
to zero? Do the results seem reasonable given the situation? Have you
included appropriate units?
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3.4.3 Force Triangle Method
The force triangle method applies to situations where there are (exactly) three
forces acting on a particle, and no more than two unknown magnitudes or direc-
tions.

If such a particle is in equilibrium then the three forces must add to zero.
Graphically, if you arrange the force vectors tip-to-tail, they will form a closed,
three-sided polygon, i.e. a triangle. This is illustrated in Figure 3.4.1.

Standalone
Embed

Figure 3.4.1 Free-Body Diagram and Force Triangle

Question 3.4.2

Why do the forces always form a closed polygon?
Answer. Because their resultant is zero.

The force triangle is a graphical representation of the vector equilibrium equa-
tion (3.1.1). It can be used to solve for unknown values in multiple different ways,
which will be illustrated in the next two examples. In Example 3.4.3 We will use
a graphical approach to find the forces causing equilibrium, and in Example 3.4.4
we will use trigonometry to solve for the unknown forces mathematically.

In the next example we will use technology to draw a scaled diagram of the
force triangle representing the equilibrium situation. We are using Geogebra1 to
make the drawing, but you could use CAD, another drawing program, or even
a ruler and protractor as you prefer. Since the diagram is accurately drawn, the
lengths and angles represent the magnitudes and directions of the forces which
hold the particle in equilibrium.

1geogebra.org

http://engineeringstatics.org/force-triangle_interactive.html
http://engineeringstatics.org/force-triangle_interactive-if.html
https://geogebra.org
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Example 3.4.3 Frictionless Incline.

A force P is being applied to a 100 lb
block resting on a frictionless incline
as shown. Determine the magnitude
and direction of force P and of the
contact force on the bottom of the
block.

Solution.

1. Assumptions.
We must assume that the block is in equilibrium, that is, either
motionless or moving at a constant velocity in order to use the equi-
librium equations. We will represent the block’s weight and the force
between the incline and the block as concentrated forces. The force
of the inclined surface on the block must act in a direction that is
normal to the surface since it is frictionless and can’t prevent motion
along the surface.

2. Givens.
The knowns here are the weight of the block, the direction of the
applied force, and the slope of the incline. The slope of the incline
provides the direction of the normal force.
The unknown values are the magnitudes of forces P and N .

3. Free-Body Diagram.
You should always begin a statics problem by drawing a free-body
diagram. It allows you to think about the situation, identify knowns
and unknowns, and define symbols.
We define three symbols, W , N , and P , representing the weight,
normal force, and applied force respectively. The angles could be
given symbols too, but since we know their values it isn’t necessary.

The free-body can be a quick
sketch or an accurate drawing but
it must show all the forces acting
on the particle and define the sym-
bols. In most cases, you won’t
know the magnitudes of all the
forces, so the lengths of the vec-
tors are just approximate.

Notice that the force N is represented as acting 25° from the y axis,
which is 90° away from the direction of the surface.
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4. Force Triangle.

Standalone
Embed

Use the known information to carefully and accurately construct the
force triangle.

(a) Start by placing point A at the origin.
(b) Draw force W straight down from A with a length of 1, and

place point B at its tip. The length of this vector represents
the weight.

(c) We know the direction of force P but not its magnitude. For
now, just draw line BC passing through point B with an angle
of 10° from the horizontal.

(d) Similarly we know force N acts at 25° from vertical because it
is perpendicular to the inclined surface, and it will close the
triangle. So draw line CA passing through point A and at a
25° angle from the y axis.

(e) Call the point where lines BC and CA intersect point C. Points
A, B, and C define the force triangle.

(f) Now draw force P from point B to point C, and
(g) Draw force N from point C back to point A.

Can you prove from the geometry of the triangle that angle BCA
is 75°?

http://engineeringstatics.org/inclined-triangle_interactive.html
http://engineeringstatics.org/inclined-triangle_interactive-if.html
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5. Results.
In steps 6 and 7, Geogebra tells us that p = (0.438;10.0°) which
means force P is 0.438 units long with a direction of 10°, similarly
n = (1.02;115°) means N is 1.02 units long at 115°. These angles
are measured counter-clockwise from the positive x axis.
These are not the answers we are looking for, but we’re close. Re-
member that for this diagram, our scale is

1 unit = 100 lbs,

so scaling the lengths of p and n by this factor gives

P = (0.438 unit)(100 lb/ unit)
= 43.8 lb at 10°∡

N = (1.02 unit)(100 lb/ unit)
= 102 lb at 115°∡.

If you use technology such as Geogebra, as we did here, or CAD
software to draw the force triangle, it will accurately produce the
solution.
If technology isn’t available to you, such as during an exam, you can
still use a ruler and protractor to draw the force triangle, but your
results will only be as accurate as your diagram. In the best case,
using a sharp pencil and carefully measuring lengths and angles, you
can only expect about two significant digits of accuracy from a hand-
drawn triangle. Nevertheless, even a roughly drawn triangle can give
you an idea of the correct answers and be used to check your work
after you use another method to solve the problem.

3.4.4 Trigonometric Method
The general approach for solving particle equilibrium problems using the trigono-
metric method is to:

1. Draw and label a free-body diagram.

2. Rearrange the forces into a force triangle and label it.

3. Identify the knowns and unknowns.

4. Use trigonometry to find the unknown sides or angles of the triangle.
There must be no more than two unknowns to use this method, which may

be either magnitudes or directions. During the problem setup, you will probably
need to use the geometry of the situation to find one or more angles.
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If the force triangle has a right angle you can use Section ?? to find the
unknown values, but in most cases, the triangle will be oblique and you will
need to use either or both of the Law of Sines or the Law of Cosines to find the
sides or angles.

Example 3.4.4 Cargo Boom.

A 24 kN crate is being lowered into
the cargo hold of a ship. Boom AB
is 20 m long and acts at a 40° angle
from kingpost AC. The boom is held
in this position by topping lift BC
which has a 1:4 slope.
Determine the forces in the boom and
in the topping lift.

Solution.

1. Draw diagrams.
Start by identifying the particle and drawing a free-body diagram.
The particle in this case is point B at the end of the boom because
it is the point where all three forces intersect. Let T be the tension
of the topping lift, C be the force in the boom, and W be the weight
of the load. Let α and β be the angles that forces T and C make
with the horizontal.
Rearrange the forces acting on point B to form a force triangle as
was done in the previous example.

2. Find angles.
Angle α can be found from the slope of the topping lift.

α = tan−1

(
1

4

)
= 14.0°.
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Angle β is the complement of the 40° angle the boom makes with
the vertical kingpost.

β = 90°− 40° = 50°

Use these values to find the three angles in the force triangle.

θ1 = α + β = 64.0°
θ2 = 90°− α = 76.0°
θ3 = 90°− β = 40.0°

3. Solve force triangle.
With the angles and one side of the force triangle known, apply the
Law of Sines to find the two unknown sides.

sin θ1
W

=
sin θ2
C

=
sin θ3
T

T = W

(
sin θ3
sin θ1

)
C = W

(
sin θ2
sin θ1

)
T = 24 kN

(
sin 40.0°
sin 64.0°

)
C = 24 kN

(
sin 76.0°
sin 64.0°

)
T = 17.16 kN C = 25.9 kN

3.4.5 Scalar Components Method
The general statement of equilibrium of forces, (3.1.1), can be expressed as the
sum of forces in the i, j and k directions

ΣF = ΣFx i + ΣFy j + ΣFz k = 0. (3.4.1)

This statement will only be true if all three coefficients of the unit vectors are
themselves equal to zero, leading to this scalar interpretation of the equilibrium
equation

ΣF = 0 =⇒


ΣFx = 0

ΣFy = 0

ΣFz = 0

(three dimensions). (3.4.2)

In other words, the single vector equilibrium equation is equivalent to three
independent scalar equations, one for each coordinate direction.
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In two-dimensional situations, no forces act in the k direction leaving just
these two equilibrium equations to be satisfied

ΣF = 0 =⇒

{
ΣFx = 0

ΣFy = 0
(two-dimensions). (3.4.3)

We will use this equation as the basis for solving two-dimensional particle equi-
librium problems in this section and equation (3.4.2) for three-dimensional prob-
lems in Section 3.5.

You are undoubtedly familiar with utility poles, which carry electric, cable
and telephone lines, but have you ever noticed as you drive down a winding road
that the poles will switch from one side of the road to the other and back again?
Why is this?

If you consider the forces acting on the top of a pole beside a curving section
of road you’ll observe that the tensions of the cables produce a net force towards
the road. This force is typically opposed by a “guy wire” pulling in the opposite
direction which prevents the pole from tipping over due to unbalanced forces.
The power company tries to keep poles beside road segments with convex curva-
ture. If they didn’t switch sides, the guy wire for poles at concave curves would
extend into the road... which is a poor design.

Example 3.4.5 Utility Pole.

Consider the utility pole next to the road shown below. A top view is
shown in the right-hand diagram. If each of the six power lines pulls with
a force of 10.0 kN, determine the magnitude of the tension in the guy wire.

Solution.

1. Assumptions.
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A utility pole isn’t two-dimensional, but we can solve this problem
as if it was by first considering the force components acting in a
horizontal plane, and then considering the components in a vertical
plane.
It also isn’t a concurrent force problem because the lines of action of
the forces don’t all intersect at a single point. However, we can make
it into one by replacing the forces of the three power lines in each
direction with a single force three times larger. This is an example
of an equivalent transformation, a trick engineers use frequently to
turn complex situations into simpler ones. It works here because all
the tensions are equal, and the outside wires are equidistant from
the center wire. You must be careful to justify all equivalent trans-
formations because they will lead to errors if they are not applied
correctly. Equivalent transformations will be discussed in greater
detail in Section 4.7 later.

2. Givens.
T = 10.0 kN and 38° and 152° angles.

3. Free-Body Diagram.
Begin by drawing a neat, labeled, free-body diagram of the top view
of the pole, establishing a coordinate system and indicating the di-
rections of the forces.
Call the tension in one power line T and the tension in the guy
wire G. Resolve the the tension of the guy wire into a horizontal
component Gh, and a vertical component Gv. Only the horizontal
component of G is visible in the top view.
Although it is not necessary, it simplifies this problem considerably
to note the symmetry and establish the x axis along the axis of
symmetry.
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4. Solution.
Solve for Gh by applying the equations of equilibrium. The symme-
try of this problem means that the ΣFx equation is sufficient.

ΣFx = 0

Gh − 6Tx = 0

Gh = 6 (T cos 76°)
= 14.5 kN

Once Gh is determined, the tension of the guy wire G is easily found
by considering the components of G in the side view. Note that the
vertical component Gv tends to compress the pole.

Gh/G = sin 38◦
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G = Gh/ sin 38◦

G = 23.6 kN

This problem could have also been solved using the force triangle method.
See Subsection 3.4.3.

In the next example we look at the conditions of equilibrium by considering
the load and the constraints, rather than taking a global equilibrium approach
which considers both the load and reaction forces.

Example 3.4.6 Slider.

Three forces act on a machine part that is free to
slide along a vertical, frictionless rod. Forces A and
B have a magnitude of 20 N and force C has a mag-
nitude of 30 N. Force B acts α degrees from the
horizontal, and force C acts at the same angle from
the vertical.
Determine the angle α required for equilibrium, and
the magnitude and direction of the reaction force
acting on the slider.

Solution.

1. Givens.
We are given magnitudes of forces A = 20 N, B = 20 N, and C =
30 N. The unknowns are angle α and resultant force R.

2. Procedure.

Standalone
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Since the rod is frictionless, it cannot prevent the slider from mov-
ing vertically. Consequently, the slider will only be in equilibrium
if the resultant of the three load forces is horizontal. Since a hori-
zontal force has no y component, we can establish this equilibrium

http://engineeringstatics.org/ggb_slider_interactive.html
http://engineeringstatics.org/ggb_slider_interactive-if.html
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condition:

Ry = ΣFy = Ay +By + Cy = 0

Inserting the known values into the equilibrium relation and simpli-
fying gives an equation in terms of unknown angle α.

Ry = Ay +By + Cy = 0

A+B sinα− C cosα = 0

20 + 20 sinα− 30 cosα = 0

2 + 2 sinα− 3 cosα = 0

This is a single equation with a single unknown, although it is not
particularly easy to solve with algebra. One approach is described at
socratic.org2. An alternate approach is to use technology to graph
the function y(x) = 2 + 2 sinx− 3 cosx. The roots of this equation
correspond to values of α which satisfy the equilibrium condition
above. The root occurring closest to x = 0 will be the answer cor-
responding to our problem, in this case α = 22.62° which you can
verify by plugging it back into the equilibrium equation. Note that
-90° also satisfies this equation, but it is not the solution we are
looking for.

Once α is known, we can find the reaction force by adding the x
components of A, B, and C.

Rx = Ax +Bx + Cx

https://socratic.org/questions/59e5f259b72cff6c4402a6a5
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= A+B cosα + C sinα

= 0 + 20 cos(22.62°) + 30 sin(22.62°)
= 30.00 N

The resultant force R is the vector sum of Rx and Ry, but in this
situation Ry is zero, so the resultant acts purely to the right with a
magnitude of Rx.

R = 30.00 N→ .

Note that this value is the resultant force, i.e. the net force applied
to the slider by A, B, and C. However, the question asks for the
reaction force, which is the force required for equilibrium. The
reaction is equal and opposite to the resultant.

R′ = −R = 30.00 N←

The next example demonstrates how rotating the coordinate system can
simplify the solution. In the first solution, the standard orientation of the x
and y axes is chosen, and in the second the coordinate system is rotated to
align with one of the unknowns, which enables the solution to be found without
solving simultaneous equations.

Example 3.4.7 Roller.

A lawn roller which weighs 160 lb is being pulled
up a 10◦ slope at a constant velocity.
Determine the required pulling force P .

Solution 1.

1. Strategy.

2socratic.org/questions/59e5f259b72cff6c4402a6a5
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(a) Select a coordinate system, in this case,
horizontal and vertical.

(b) Draw a free-body diagram

(c) Solve the equations of equilibrium using
the scalar approach.

2. Procedure.

ΣFx = 0 ΣFy = 0

−Px +Nx = 0 Py +Ny = 0

N cos 80◦ = P cos 40◦ P sin 40◦ +N sin 80◦ = W

N = P

(
0.766

0.174

)
0.643P + 0.985N = 160 lb

Solving simultaneously for P

0.643P + 0.985(4.40P ) = 160 lb
4.98P = 160 lb

P = 32.1 lb

Solution 2.

1. Strategy.

(a) Rotate the standard coordinate system
10◦ clockwise to align the new y′ axis with
force N .

(b) Draw a free-body diagram and calculate
the angles between the forces and the ro-
tated coordinate system.

(c) Solve for force P directly.
2. Procedure.

ΣFx′ = 0
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−Px′ +Wx′ = 0

P cos 30◦ = W sin 10◦

P = 160 lb
(
0.1736

0.866

)
P = 32.1 lb

3.4.6 Multi-Particle Equilibrium
When two or more particles interact with each other there will always be common
forces between them as a result of Newton’s Third Law, the action-reaction
principle.
Consider the two boxes with weights
W1 and W2 connected to each other
and the ceiling shown in the inter-
active diagram. Position one shows
the physical arrangement of the ob-
jects, position two shows their free-
body diagrams, and position three
shows simplified free-body diagrams
where the objects are represented
by points. The boxes were freed
by replacing the cables with tension
forces TA and TB.

Simplified FBD

Stand-
alone
Embed

Figure 3.4.8 Two suspended weights

From the free-body diagrams you can see that cable B only supports the
weight of the bottom box, while cable A and the ceiling support the combined
weight. The tension TB is common to both diagrams. Recognizing the common
force is the key to solving multi-particle equilibrium problems.

Example 3.4.9 Two hanging weights.

A 100 N weight W is supported
by cable ABCD. There is a fric-
tionless pulley at B and the hook
is firmly attached to the cable at
point C.
What is the magnitude and direc-
tion of force P required to hold
the system in the position shown?

θ

Hint. The particles are points B and C. The common force is the tension
in rope segment BC.
Solution.

http://engineeringstatics.org/two-weight_interactive.html
http://engineeringstatics.org/two-weight_interactive.html
http://engineeringstatics.org/two-weight_interactive-if.html
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1. Strategy.
Following the General Procedure we identify the particles as points
A and B, and draw free-body diagrams of each. We label the rope
tensions A, C, and D for the endpoints of the rope segments, and
label the angles of the forces α, β, and ϕ. We will use the standard
Cartesian coordinate system and use the scalar components method.

β
θ

Weight W was given, and we can easily find angles α, β, and ϕ so
the knowns are:

W = 100 N

α = tan−1

(
40

20

)
= 63.4°

β = tan−1

(
10

80

)
= 7.13°

ϕ = tan−1

(
50

50

)
= 45°

Counting unknowns we find that there are two on the free-body
diagram of particle C (C and D), but four on particle B, (A C, P
and θ).
Two unknowns on particle C means it is solvable since there are two
equilibrium equations available, so we begin there.

2. Solve Particle C.

ΣFx = 0 ΣFy = 0

−Cx +Dx = 0 Cy +Dy −W = 0

C cos β = D cosϕ C sin β +D sinϕ = W
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C = D

(
cos 45◦

cos 7.13◦

)
C sin 7.13◦ +D sin 45◦ = 100 N

C = 0.713D 0.124C + 0.707D = 100 N

Solving these two equations simultaneously gives

C = 89.6 N D = 125.7 N.

With particle C solved, we can use the results to solve particle B.
There are three unknowns remaining, tension A, magnitude P , and
direction θ. Unfortunately, we still only have two available equilib-
rium equations. When you find yourself in this situation with more
unknowns than equations, it generally means that you are missing
something. In this case, it is the pulley. When a cable wraps around
a frictionless pulley the tension doesn’t change. The missing infor-
mation is that A = C. Knowing this, the magnitude and direction
of force P can be determined.
Because A = C, the free-body diagram of particle B is symmetric,

and the technique used in Example 3.4.5 to rotate the coordinate
system could be applied here.

3. Solve Particle B.
Referring to the fbd for particle B we can write these equations.

ΣFx = 0 ΣFy = 0

−Ax − Px + Cx = 0 Ay − Py − Cy = 0

P cos θ = C cos β − A cosα P sin θ = A sinα− C sin β

Since A = C = 89.6 N, substituting and solving simultaneously gives

P cos θ = 48.8 N P sin θ = 69.0 N
P = 84.5 N θ = 54.7◦.

These are the magnitude and direction of vector P. If you wish, you
can express P in terms of its scalar components. The negative signs
on the components have been applied by hand since P points down
and to the left.

P = ⟨−P cos θ,−P sin θ⟩
= ⟨−48.8 N,−69.0 N⟩
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3.5 3D Particle Equilibrium
The world we live in has three dimensions. One and two-dimensional textbook
problems have been useful for learning the principles of engineering mechanics,
but to model real-world problems we will have to consider all three.

Fortunately, all the principles you have learned so far still apply, but many
students have difficulty visualizing three-dimensional problems drawn on two-
dimensional paper and the mathematics becomes a bit harder. It is especially
important to have good diagrams and keep your work neat and organized to
avoid errors.

3.5.1 Three-Dimensional Coordinate Frame
We need a coordinate frame for three dimensions, just as we did in two dimen-
sions, so we add a third orthogonal axis z to our existing two-dimensional frame.

For equilibrium of a particle, usually the origin of the coordinate frame is
at the particle, the x axis is horizontal, and the y axis is vertical just as in a
two-dimensional situation. The orientation of the z axis is determined by the
right-hand rule. Using your right hand, put your palm at the origin and point
your fingers along the positive x axis. Then curl your fingers towards the positive
y axis. Your thumb will point in the direction of the positive z axis. For example,
in the plane of the page with the positive x axis horizontal and to the right and
the positive y axis vertical and upwards, the positive z axis will point towards
you out of the page. Remember that the three axes are mutually perpendicular,
i.e. each axis is perpendicular to both of the others. The right-hand rule is
important in many aspects of engineering, so make sure that you understand
how it works. Mistakes will lead to sign errors.

x

y

x

z

y

Figure 3.5.1 Point-and-curl right-hand rule technique.

3.5.2 Free-Body Diagrams
As we did before, we begin our analysis by drawing a free-body diagram that
shows all forces and moments acting on the object of interest. Drawing a fbd
in three dimensions can be difficult. It is sometimes hard to see things in three
dimensions when they are drawn on a two-dimensional sheet. Consequently, it
is important to carefully label vectors and angles, but not to clutter up the
diagram with too much and/or unnecessary information. When working in two
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dimensions, you only need one angle to determine the direction of the vector,
but when working in three dimensions you need two or three angles.

3.5.3 Angles
As stated above, when working in three dimensions you need three angles to
determine the direction of the vector, namely, the angle with respect to the x
axis, the angle with respect to the y axis and the angle with respect to the z
axis. The three angles mentioned above are not necessarily located in any of the
coordinate planes. Think of it this way — three points determine a plane, and
in this case, the three points are: the origin, the tip of the vector, and a point
on an axis. The plane made by those three points is not necessarily the xy, yz,
or xz plane. It is most likely a “tilted” plane.

As you learned in Subsection 2.4.2, one way to quantify the direction of a
vector is with direction cosine angles. These direction cosine angles are measured
from the positive x, y, and z axes and are often labeled x, y, and z, respectively.

As with two dimensions, angles can be determined from geometry — a dis-
tance vector going in the same direction as the force vector. This is the three-
dimensional equivalent of similar triangles that you used in the two-dimensional
problems.

Standalone
Embed

Figure 3.5.2 Direction Cosine Angles
If you know that the line of action of a force vector goes between two points,

then you can use the distance vector that goes from one point to the other to
determine the angles.

Let’s suppose that the line of action goes through two points A and B, and
the direction of the force is from A towards B. The first step in determining
the three angles is to write the distance vector from point A towards point B.
Let’s call this vector rAB. Starting at point A, you need to determine how to
get to point B by moving in each of the three directions. Ask yourself: to get
from point A to point B do I have to move in the x direction? If so, how far do
I have to travel? This becomes the x component of the vector rAB namely rABx .
Next, to get from point A to point B how far do I move in y direction? This
distance is rABy . Finally, to get from point A to point B how far do I move in
the z-direction? This distance is rABz .

When writing these scalar components pay attention to which way you move

http://engineeringstatics.org/ggb_3d-direction-angles_interactive.html
http://engineeringstatics.org/ggb_3d-direction-angles_interactive-if.html
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along the axes. If you travel toward the positive end of an axis, the corresponding
scalar component gets a positive sign. Travel towards the negative end results
in a negative sign. The sign is important.

Once you have determined the components of the distance vector rAB, you
can determine the total distance from point A to B using the three-dimensional
Pythagorean Theorem

rAB =
√

(rABx)
2 + (rABy)

2 + (rABz)
2 (3.5.1)

Lastly, the angles are determined by the direction cosines, namely

cos θx =
rABx

rAB

cos θy =
rABy

rAB

cos θz =
rABz

rAB

Since the force vector has the same line of action as the distance vector, by
the three-dimensional version of similar triangles,

rABx

rAB

=
Fx

F

rABy

rAB

=
Fy

F

rABz

rAB

=
Fz

F
.

So,

Fx =

(
rABx

rAB

)
F Fy =

(
rABy

rAB

)
F Fz =

(
rABz

rAB

)
F

Now, that is a bit of math there, but the important things to remember are:

• You can use three angles to determine the direction of a force in three
dimensions.

• You can use the geometry to get them from a distance vector that lies
along the line of action of the force.

The three direction cosine angles are not mutually independent. From (3.5.1)
you can easily show that

cos θ2x + cos θ2y + cos θ2z = 1, (3.5.2)

so if you know two direction cosine angles you can find the third from this
relationship.

3.5.4 General Procedure
The general procedure for solving three-dimensional particle equilibrium is essen-
tially the same as for two-dimensional particle equilibrium using the components
method. The major differences are that you must carefully find each vector com-
ponent using the techniques from Section 2.4. The process follows the same
five-step method for creating a free-body diagram, followed by steps to solve
your equilibrium equations.

Draw a Free-body Diagram:
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1. Select and isolate the particle. The “free-body” in free-body diagram means
that a concurrent force particle or connection must be isolated from the
supports that are physically holding it in place. This means creating a
separate free-body diagram from your problem sketch.

2. Establish a coordinate system. Draw a right-handed coordinate system to
use as a reference for your equilibrium equations. Look ahead and select a
coordinate system that minimizes the number of force components. This
will simplify your vector algebra. The choice is technically arbitrary, but
a good choice will simplify your calculations and reduce your effort.

3. Identify all loads. Add force vectors to your free-body diagram representing
each applied load pushing or pulling the body, in addition to the body’s
weight, if it is non-negligible. If a force vector has a known direction, draw
it. If its direction is unknown, assume one, and your later algebra will
check your assumption. Every vector should have a descriptive variable
name and a clear arrowhead indicating its direction.

4. Identify all reactions. Reactions represent the resistance of the physical
supports you cut away by isolating the body in step 1. All particle supports
are some type of two-force members with tension or compression reaction
forces. These reactions will all be concurrent with the body loads from
Step 2. Label each reaction with a descriptive variable name and a clear
arrowhead. Again, if a vector’s direction is unknown, just assume one.

5. Label the diagram. Verify that every dimension, angle, force, and moment
is labeled with either a value or a symbolic name if the value is unknown.
In our eyes, dimensioning is optional. Having the information needed
for your calculations is helpful, but don’t clutter the diagram up with
unneeded details. Your final free-body diagram should be a stand-alone
presentation and is the basis of your equilibrium equations.

Create and Solve Equilibrium Equations

1. Break vectors into components. Compute each force’s x, y, and z com-
ponents using the tools outlined in Section 2.4. While the components in
two-dimensional problems can often be found with right triangle trigonom-
etry, three-dimensional problems often use unit vectors.

2. Write equilibrium equations. Now represent your free-body diagram as
equilibrium equations. For a three-dimensional particle equilibrium prob-
lem, you can have up to three force equilibrium equations corresponding
to a force balance in the three independent x, y, and z directions. Each
equation should start with the governing equation, like ΣFx = 0.

3. Count knowns and unknowns. At this point, you should have at most three
unknowns remaining. If you have over three, reread the problem and look
for overlooked information.
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4. Solve for unknowns. Use algebra to simplify the equilibrium equations and
solve for unknowns. With multiple unknowns scattered across multiple
equations, linear algebra may be more efficient than substitution. Assume
that all answers have units - unless you prove that they don’t. Finally,
underline or box your answers.

5. Check your work. If you add the components of the forces, do they add
to zero? Do the results seem reasonable given the situation? Have you
included appropriate units?

Now let’s see how that process looks on an example problem.

Example 3.5.3 Balloon.

A hot air balloon 30 ft above the
ground is tethered by three cables as
shown in the diagram.
If the balloon is pulling upwards with
a force of 900 lb, what is the tension
in each of the three cables?
The grid lines on the ground plane
are spaced 10 ft apart. z

A

D
30 ft

B

C

x

Solution.

1. Strategy.
The three tensions are the un-
knowns which we can find by ap-
plying the three equilibrium equa-
tions.
We’ll establish a coordinate sys-
tem with the origin directly below
the balloon and the y axis vertical,
then draw and label a free-body di-
agram.
Next we’ll use the given informa-
tion to find two points on each line
of action to find the components
of each force in terms of the un-
knowns.

z x

When the x, y and z components of all forces can be expressed in
terms of known values, the equilibrium equations can be solved.

2. Geometry.
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From the diagram, the coordinates of the points are

A = (−20, 0, 0) B = (30, 0, 20) C = (0, 0,−20) D = (0, 30, 0)

Use the point coordinates to find the x, y and z components of the
forces.

Ax =
−20
LA

A Ay =
−30
LA

A Az =
0

LA

A

Bx =
30

LB

B By =
−30
LB

B Bz =
20

LB

B

Cx =
0

LC

C Cy =
−30
LC

C Cz =
−20
LC

C

Where LA, LB and LC are the lengths of the three cables found with
the distance formula.

LA =
√

(−20)2 + (−30)2 + 02 = 36.1 ft
LB =

√
302 + (−30)2 + 202 = 46.9 ft

LC =
√

02 + (−30)2 + (−20)2 = 36.1 ft

3. Equilibrium Equations.
Applying the three equations of equilibrium yields three equations
in terms of the three unknown tensions.

ΣFx = 0

Ax +Bx + Cx = 0

− 20

36.1
A+

30

46.9
B + 0C = 0

A = 1.153B (1)

ΣFz = 0

Az +Bz + Cz = 0

0A+
20

46.9
B − 20

36.1
C = 0

C = 0.769B (2)
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ΣFy = 0

Ay +By + Cy +D = 0

− 30

36.1
A− 30

46.9
B − 30

36.1
C + 900 = 0

0.832A+ 0.640B + 0.832C = 900 lb (3)

Solving these equations simultaneously yields the answers we are
seeking. One way to do this is to substitute equations (1) and (2)
into (3) to eliminate A and C and solve the resulting equation for
B.

0.832 (1.153B) + 0.640B + 0.832 (0.769B) = 900 lb
2.24B = 900 lb

B = 402 lb

With B known, substitute it into equations (1) and (2) to find A
and C.

A = 1.153B C = 0.769B

= 464 lb = 309 lb

Example 3.5.4 Skycam.

The skycam at Stanford Univer-
sity Stadium has a mass of 20 kg
and is supported by three cables
as shown. Assuming that it is cur-
rently in equilibrium, find the ten-
sion in each of the three supporting
cables.
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Solution. In this situation, the directions of all four forces are specified
by the angles in the free-body diagram, and the magnitude of the weight
is known. The three unknowns are the magnitudes of forces A, B, and C.

W = mg = 20 kg 9.81 m/s2 = 196.2 N

We will first find unit vectors in the directions of the four forces by in-
spection of the free-body diagram. This step requires visualizing the com-
ponent’s unit vectors and determining the angles each makes with the
coordinate axis.

Ŵ = ⟨0,−1, 0⟩
Â = ⟨cos 35◦, cos 55, 0⟩
B̂ = ⟨− cos 15◦ cos 30◦, cos 75◦,− cos 15◦ cos 60◦⟩
Ĉ = ⟨0, cos 70, cos 20◦⟩

Particle equilibrium requires that
∑

F = 0.

A Â +B B̂ + C Ĉ = −W Ŵ

This is a 3 × 3 system of three simultaneous equations, one for each
coordinate direction, which needs to be solved for A, B, and C.

A cos 35◦ − B cos 15◦ cos 30◦ + 0 = 0 (ΣFx = 0)

A cos 55◦ +B cos 75◦ + C cos 70◦ = 196.2 N (ΣFy = 0)

0− cos 15◦ cos 60◦ + C cos 20◦ = 0 (ΣFz = 0)

These can be solved by any method you choose. Here we will use Sage.
Evaluating the coefficients and expressing the equations in matrix form
gives 0.819 −0.837 0

0.574 0.259 0.342

0 −0.482 0.940

AB
C

 =

 0

196.2 N
0

 .

http://engineeringstatics.org/ggb_skycam-labeled_interactive.html
http://engineeringstatics.org/ggb_skycam-labeled_interactive-if.html


CHAPTER 3. EQUILIBRIUM OF PARTICLES 102

This is an equation in the form

[A][x] = [B].

Entering the coefficient matrices into Sage.

A = Matrix ([[0.819 , -0.837 ,0] ,[0.574 ,0.259 ,
0.342] ,[0 , -0.482 ,0.940]])

B = vector ([0, 196.2, 0])
x = A.solve_right(B)
x

(196.391530042156 , 192.168056277808 , 98.5372373679827)

After evaluating, we learn that

A = 196.4 N B = 192.2 N C = 98.5 N.
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3.6 Exercises (Ch. 3)

Standalone

http://engineeringstatics.org/numbas-chapter-3.html


Chapter 4

Moments and Static Equivalence

When a force is applied to a body, the body tends to translate in the direction
of the force and also tends to rotate. We have already explored the translational
tendency in Chapter 3. We will focus on the rotational tendency in this chapter.

This rotational tendency is known as the moment of the force, or more simply
the moment. You may be familiar with the term torque from physics. Engineers
generally use “moment” whereas physicists use “torque” to describe this concept.
Engineers reserve “torque” for moments that are applied about the long axis of
a shaft and produce torsion.

Moments are vectors, so they have magnitude and direction and obey all
rules of vector addition and subtraction described in Chapter 2. Additionally,
moments have a center of rotation, although it is more accurate to say that they
have an axis of rotation. In two dimensions, the axis of rotation is perpendicular
to the plane of the page and so will appear as a point of rotation, also called
the moment center. In three dimensions, the axis of rotation can be any
direction in 3D space.

A wrench provides a familiar example. A force F applied to the handle of a
wrench, as shown in Figure 4.0.1, creates a moment MA about an axis out of the
page through the centerline of the nut at A. The M is bold because it represents a
vector, and the subscript A indicates the axis or center of rotation. The direction
of the moment can be either clockwise or counter-clockwise depending on how
the force is applied.

Standalone
Embed

Figure 4.0.1 A moment MA is created about point A by force F.
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4.1 Direction of a Moment
In a two-dimensional problem the direction of a moment can be determined
easily by inspection as either clockwise or counterclockwise. A counter-clockwise
rotation corresponds with a moment vector pointing out of the page and is
considered positive.

In three dimensions, a moment vector may point in any direction in space
and is more difficult to visualize. The direction is established by the right-hand
rule. Recall that in Subsection 2.8.1 that you were introduced to the right-hand
rule and cross products.

To find a moment using the right-hand rule, first establish a position vector
r pointing from the point of interest (the rotation center) to a point along the
force’s line-of-action. Next, there are two options for physically finding the
direction of the moment from the right-hand rule, the three-finger or slide-and-
curl methods.

To use the three-finger method, align your right-hand index finger with the
position vector and your middle finger with the force vector, then your thumb
will point in the direction of the moment vector. Alternately, if you align your
thumb with the position vector and your index finger with the force vector, then
your middle finger points in the direction of the moment vector M

F

M

r

F

M

r

Figure 4.1.1 Three finger right-hand rule techniques for moments.
Another approach is the point-and-curl method. Start with your right hand

flat and fingertips pointing along the position vector r pointing from the center
of rotation to a point on the force’s line of action. Rotate your hand until the
force F is perpendicular to your fingers and imagine that it pushes your fingers
into a curl around your thumb. In this position, your thumb defines the axis of
rotation, and points in the direction of the moment M.

r

F M

Figure 4.1.2 Point-and-curl right-hand rule technique for moments.
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Consider the page shown below on a horizontal surface. Using these tech-
niques, we see that a counter-clockwise moment vector points up, or out of the
page, while the clockwise moment points down or into the page. In other words,
the counter-clockwise moment acts in the positive z direction and the clockwise
moment acts in the −z direction.

x
y

Figure 4.1.3 Moments in the plane of the page.
Any of these techniques may be used to find the direction of a moment. They

all produce the same result so you don’t need to learn them all, but make sure
you have at least one method you can use accurately and consistently.

4.2 Magnitude of a Moment

Key Questions

• Why is there no moment about any point on the line of action of a
force?

• If you increase the distance between a force and a point of interest,
does the moment of the force go up or down?

• What practical applications can you think of that could use moments
to describe?

As you probably know, the turning effect produced by a wrench depends on
where and how much force you apply to the wrench, and the optimum direction
to apply the force is at right angles to the wrench’s handle. If the nut won’t
budge, you need to apply a larger force or get a longer wrench.

This strength of this turning effect is what we mean by the magnitude of a
moment (or of a torque).

4.2.1 Definition of a Moment
The magnitude of a moment is found by multiplying the magnitude of force F
times the moment arm, where the moment arm is defined as the perpendic-
ular distance, d⊥, from the center of rotation to the line of action of the force,
measured perpendicularly as illustrated in the interactive.

M = Fd⊥. (4.2.1)
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Figure 4.2.1 Definition of the moment, M = Fd⊥.
Notice that the magnitude of a moment depends only on the force and the mo-

ment arm, so the same force produces different moments about different points in
space. The closer the center of rotation is to the force’s line of action, the smaller
the moment. Points on the force’s line of action experience no moment because
there the moment arm is zero. Furthermore, vector magnitudes are always pos-
itive, so clockwise and counter-clockwise moments with the same strength have
the same magnitude.

4.3 Scalar Components
We saw in Subsection 3.3.2 that vectors can be expressed as the product of a
scalar component and a unit vector.

For example, a 100 N force acting down can be represented by Fy j, where
Fy is the scalar component and Fy = −100 N. This describes a vector F which
has a magnitude of 100 N and acts in the −j direction, i.e. ↓. The unit vector
j along with the sign (+/−) of Fy determines the direction, while the absolute
value of Fy determines the vector’s magnitude.

Moments in two dimensions are either clockwise or counter-clockwise, or al-
ternately they point into or out of the page. This means that a single scalar
value is sufficient to completely specify such a moment if we have established
which direction is positive. The choice is arbitrary, but the default sign conven-
tion is based on the right-handed Cartesian coordinate system, as illustrated in
Figure 4.1.3.

When using the standard convention, counter-clockwise moments are posi-
tive and clockwise moments are negative. Simply append a positive sign to the
magnitude for counter-clockwise moments or a negative sign for clockwise mo-
ments to create a scalar component. You are free to use the opposite convention,
but this should be explicitly stated.

Example 4.3.1 Sign Conventions.

For each scalar component, determine the direction of the corresponding
moment vector.

http://engineeringstatics.org/ggb_dan-wrench-2_interactive.html
http://engineeringstatics.org/ggb_dan-wrench-2_interactive-if.html
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A M1 = 30 N·m

B M2 = −400 kN·m

C M3 = 25 N·m ⟳

D M4 = −100 ft·lb ⟳

Solution.

A CCW. Use the default sign convention, i.e. CCW is positive.

B CW. Negative value means the moment acts opposite to positive
direction.

C CW. The arrow overrides default sign convention, so now CW is
positive direction.

D CCW. Negative CW is CCW.

Scalar components are most useful when combining several clockwise and
counter-clockwise moments. The resulting algebraic sum of the scalar compo-
nents will be either positive, negative, or zero, and this sign indicates the direc-
tion of the resultant moment.

Example 4.3.2 Scalar addition.

Use scalar moments to determine the magnitude of the resultant of three
moments:
M1 = 25 kN·m ⟳, M2 = 40 kN·m ⟲, and M3 = 30 kN·m ⟳
Solution. Manually attaching the signs according to the standard sign
convention (CCW +) gives the scalar moments:

M1 = −25 kN·m
M2 = +40 kN·m
M3 = −30 kN·m.

Adding these moments gives the resultant scalar moment.

M = M1 +M2 +M3

= (−25 kN·m) + (40 kN·m) + (−30 kN·m)

= −15 kN·m.

The negative sign indicates that the resultant vector moment is clockwise.
Interpreting the resultant as a vector gives:

M = 15 kN·m ⟳ .
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The corresponding magnitude of M is

|M| = 15 kN·m.

In three dimensions, moments, like forces, can be resolved into components
in the x, y, and z directions.

M = Mx i +My j +Mx k.

This means that the three scalar components are required to fully specify a
moment in three dimensions.

Warning 4.3.3

Be careful not to mix up magnitudes with scalar components.

• Both are scalar values with units.

• Magnitudes are never negative. Scalar components have a sign.

• Scalar components always have an associated sign convention. It
may be implied or specifically indicated. By default counter-
clockwise moments are positive.

• There is no special symbol or notation to indicate whether a quantity
represents a vector magnitude or a scalar moment, so pay attention
to context.

4.4 Varignon’s Theorem
Varignon’s Theorem is a method to calculate moments developed in 1687 by
French mathematician Pierre Varignon (1654 – 1722). It states that sum of the
moments of several concurrent forces about a point is equal to the moment of
the resultant of those forces, or alternately, the moment of a force about a point
equals the sum of the moments of its components.

This means you can find the moment of a force by first breaking it into com-
ponents, evaluating the scalar moments of the individual components, and finally
summing them to find the net moment about the point. The scalar moment of a
component is the magnitude of the component times the perpendicular distance
to the moment center by the definition of a moment, with a positive or negative
sign assigned to indicate its direction.

This may sound like more work than just finding the moment of the original
force, but in practice, it is often easier. Consider the interactive to the right. If
we break the force into components along the wrench handle and perpendicular
to it, the sum of the moments is

M = F⊥d, (4.4.1)
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where d is the length of the handle, and F⊥ is the component of F perpendicular
to the handle. Here, the contribution of the parallel component to the sum is
zero, since its line of action passes through the moment center A.

Standalone
Embed

Figure 4.4.1 Varignon’s Theorem: M = F⊥d

This result agrees with our intuitive understanding of how a wrench works;
the greatest torque is developed when the force is applied at a right angle to the
handle.

Equations (4.2.1) and (4.4.1) not only produce the same result, but they are
also completely identical. If the length of the handle is d and the angle between
the force F and the handle is θ, then d⊥ = d sin θ, and F⊥ = F sin θ. Using either
equation to calculate the moment gives

M = F d sin θ. (4.4.2)

4.4.1 Rectangular Components
Varignon’s theorem is particularly convenient to use because the diagram pro-
vides horizontal and vertical dimensions, which is often the case. If you de-
compose forces into horizontal and vertical components you can find the scalar
moments of the components without difficulty.
The moment of a force is the sum of
the moments of the components.

M = ±Fxdy ± Fydx (4.4.3)

Take care to assign the correct sign to
the individual moment terms to indi-
cate direction; positive moments tend
to rotate the object counter-clockwise
and negative moments tend to rotate
it clockwise according to the standard
right-hand rule convention.

Figure 4.4.2 Sum of moments of com-
ponents. M = ±Fxdy ± Fydx

http://engineeringstatics.org/ggb_dan-wrench-3_interactive.html
http://engineeringstatics.org/ggb_dan-wrench-3_interactive-if.html
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Example 4.4.3 Varignon’s Theorem.

A 750 lb force is applied to the frame as
shown. Determine the moment this force
makes about point A.

3 ft

2 ft

F
60°

A

Solution. Force F acts 60◦ from the vertical with a 750 lb magnitude,
so its horizontal and vertical components are

Fx = F sin 60◦ = 649.5 lb
Fy = F cos 60◦ = 375.0 lb

For component Fx, the perpendicular distance from point A is 2 ft so the
moment of this component is

M1 = 2Fx = 1299 ft·lb Clockwise.

For component Fx, the perpendicular distance from point A is 3 ft so the
moment of this component is

M2 = 3Fy = 1125 ft·lb Counter-clockwise.

Assigning a negative sign to M1 and a positive sign to M2 to account for
their directions and summing, gives the moment of F about A.

MA = −M1 +M2

= −1299 + 1125

= −174 ft·lb

The negative sign indicates that the resultant moment is clockwise, with
a magnitude of 174 ft·lb.

MA = 174 ft·lb Clockwise.

The interactive diagram below will help you visualize the different approaches
for finding moments covered in this section.
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Figure 4.4.4 Three equivalent approaches to finding a moment about a point.

Example 4.4.5 2D Moments - Four Ways.

x

y

-1 5 ft-2 4

4

-4

-3 3

3

-3

-4 2

2

-2

-5 1

1

-1

A

D

rAD

F = 500 lbf

2
3

Force F has a magnitude of 500 lbf
and acts on point D in the direction
shown.
Find the moment caused by force F
around point A = (−4,−3) ft us-
ing different methods and verify that
they give the same result.

This problem demonstrates four different ways you can solve the problem.
The first two methods use vector algebra; the second two take a scalar
approach that uses geometry and right-triangle trigonometry. All four
methods are mathematically identical.

(a) Find the moment of F about point A using Varignon’s Theorem,

MA = (rx × Fy) + (ry × Fx) .

Answer. MA = 1664.10 ft·lbf (+khat)

Solution. Varignon’s Theorem states that the moment of a force
is the sum of the moments of its components. In this example we
will determine the vertical and horizontal components of r and F,
then add the cross products of the two perpendicular pairs.

http://engineeringstatics.org/moments-3-ways_interactive.html
http://engineeringstatics.org/moments-3-ways_interactive-if.html
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x

y

-1 5 ft-2 4

4

-4

-3 3

3

-3

-4 2

2

-2

-5 1

1

-1

F=500 lbf

rAD

2

3
θ

A

D

ry

rx

Fx

Fy

MA

The 3:2 slope of F can be expressed as an angle.

θ = tan−1 3

2
= 56.3◦

Find the components of r and F.

F = 500 lbf⟨cos 56.3◦, sin 56.3◦⟩
= ⟨277.35, 416.025⟩ lbf

r = ⟨6, 3⟩ ft

Finally, following Varignon’s Theorem, add the cross products of the
perpendicular component pairs.

MA = (rx × Fy) + (ry × Fx)

= 6 ft · 416.025 lbf (k) + 3 ft · 277.35 lbf (−k)
= 1664.1 ft·lbf (+k)

Notes:

• When finding the moment of two-dimensional vectors in com-
ponent form, this is often the preferred method, as it is quick
and most find the process intuitive.

• The first cross product, rx × Fy, has a positive value because
i× j = +k, not because you are simply multiplying two postive
components.

• The second cross product, ry × Fx, results in a negative value
because j× i = −k.

• All moments have units of force times distance, in this case [ft
· lbf].
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• The overall sign of MA determines the final direction. A pos-
itive value corresponds to a counterclockwise moment – right
thumb out of the page – and a negative value indicates a clock-
wise moment. See Figure 4.1.2 for the hand diagram.

(b) Find the moment of F about point A using a vector cross product,

MA = r× F.

Answer. MA = 1664.10 ft·lbf (+k)

Solution.

x

y

-1 5 ft-2 4

4

-4

-3 3

3

-3

-4 2

2

-2

-5 1

1

-1

F=500 lbf

rAD

2

3
θ

A

D

ry

rx

Fx

Fy

MA

We can also solve for the moment
MA using the vector determinant
method of Subsection 2.8.3. We
can use the values of θ, r, and
F computed in part (a) above.
Jumping straight into the vector
determinant, we find:

MA = r× F

=

∣∣∣∣∣∣
i j k
rx ry 0

Fx Fy 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
i j k
6 3 0

277.35 416.025 0

∣∣∣∣∣∣
= 6 ft (416.025 lbf) (k) + 3 ft (277.35 lbf) (−k)
= 1664.1 ft·lbf (+k)

Notes:

• Determinants are a robust way to compute two-dimensional
cross products but take a bit more effort than Varignon’s The-
orem. The math is exactly the same either way, which means
that Varignon’s Theorem is just a two-dimensional shortcut to
working through a vector determinant.
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• The signs on the cross-product terms rx × Fy and ry × Fx still
come from the right-hand rule, and conveniently the process
of multiplying diagonals in the determinant takes care of the
signs.

• Recognize that the reason we multiply diagonals in a determi-
nant is that we only want to multiply the perpendicular com-
ponents.

(c) Find the moment of F about point A by finding the perpendicular
distance d⊥,

MA = F d⊥.

Answer. MA = 1664.10 ft·lbf (+k)

Solution.

x

y

-1 5 ft-2 4

4

-4

-3 3

3

-3

-4 2

2

-2

-5 1

1

-1

d
A

B

C

D

F = 500 lbf

2

3
θ1

θ2

θ3

4
MA

This solution requires you to find
the perpendicular distance d⊥ be-
tween the point A and line-of-
action of F. One way to find this
distance is shown below.

(a) Draw a moderately large and accurate diagram. Too much con-
fusion has been created by small, inaccurately-drawn diagrams.

(b) Start with the angle θ that you found in Part (a) of this example.
The angle opposite θ1 is θ2.

(c) Next, using the corresponding angles of parallel lines, transfer
θ2 from the force triangle to triangle ABC as θ3.

(d) Finally, find d⊥ using the sine function.

sin θ3 =
d⊥
AC

d⊥ = AC (sin θ3)

= 4 (sin 56.3◦)

= 3.328 ft
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(e) Finally, compute the moment about A.

MA = F d⊥

= 3.328 ft (500 lbf)
= 1664.10 ft·lbf

MA = 1664.10 ft·lbf (+k)

The (+k) direction of MA comes from the observation of the
right-hand rule, as scalar moment computations are not direc-
tional.

(d) Find the moment of F about point A by finding the perpendicular
component of F,

MA = F⊥ d.

Answer. MA = 1664.10 ft·lbf (+k)

Solution.

x

y

-1 5 ft-2 4

4

-4

-3 3

3

-3

-4 2

2

-2

-5 1

1

-1

F

A

G
D

H
E

d

F = 500 lbf
θ

α

β1

β2

γ
6

3

MA

This solution requires you to find
the portion of force F perpendic-
ular to the moment arm d. One
approach to finding F⊥ is shown
below.

(a) Draw a large and accurate diagram to assist in finding the dis-
tances and angles in this problem.

(b) The next three steps focus on finding the angle β2 + α to help
find F⊥. Using triangle ADG, compute the angle β1.

β1 = tan−1

(
3

6

)
= 26.565◦

(c) Next, recognizing that β1 is measured from horizontal and F⊥
is perpendicular to segment d, then the angle between vertical
and F⊥ must also be β, which we’ll label β2. This geometric
rule for horizontal: vertical angles of perpendicular lines is also
supported by the fact that β1 and β2 are both complementary
to γ.
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(d) The last angle needed is α, which is complimentary to θ.

α = 90◦ − θ = 90◦ − 56.31◦ = 33.69◦

(e) Find F⊥ using right triangle DEH.

cos (β2 + α) =
F⊥

500 lbf
F⊥ = 500 lbf(cos(26.565◦ + 33.69◦))

F⊥ = 248.07 lbf

(f) Find the length d using the Pythagorean Theorem.

d =
√
62 + 32 = 6.708 ft

(g) Finally, compute the magnitude MA and the vector MA.

MA = F⊥d

= 248.07 lbf · 6.708 ft
MA = 1664.10 ft·lbf (+k)

The counterclockwise direction (+k) comes from the right-hand
rule, since scalar moment computations are not directional.

4.5 3D Moments

Key Questions

• Where does the moment arm vector r start and end?

• Why does Varignon’s Theorem give you the same answer as a deter-
minant?

• How can you combine a dot product and a cross product to find the
moment about a line?

• Why does a mixed-triple determinant give you a scalar while a cross-
product determinant gives you a vector?

The circular arrows we used to represent vectors in two dimensions are un-
clear in three dimensions, so instead, moments are drawn as arrows and rep-
resented by x, y and z components, like force and position vectors. You will
sometimes see moments indicated with double arrowheads to differentiate them
from force vectors.
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In three dimensions, it is usually not convenient to find the moment arm and
use equation (4.2.1), so instead we will use the vector cross product, which is
easier to apply but less intuitive.

4.5.1 Moment Cross Products
The most robust and general method to find the moment of a force is to use the
vector cross product

M = r× F, (4.5.1)
where F is the force creating the moment, and r is a position vector from the
moment center to the line of action of the force. The cross product is a vector
multiplication operation and the product is a vector perpendicular to the vectors
you multiplied.

Standalone
Embed

Figure 4.5.1 Moment cross product. M = r× F
The mathematics of cross products was discussed in Section 2.8, and equation

(2.8.1) provides one method to calculate a moment cross products

M = |r||F| sin θ û. (4.5.2)

Here, θ is the angle between the two vectors as shown in Figure 4.5.1 above, and
û is the unit vector perpendicular to both r and F with the direction coming
from the right-hand rule. This equation is useful if you know or can find the
magnitudes of r and F and the angle θ between them. This equation is the vector
equivalent of (4.4.2).

Alternately, if you know or can find the components of the position r and
force F vectors, it’s typically easiest to evaluate the moment cross product using
the determinant form discussed in Subsection 2.8.3.

M = r× F

=

∣∣∣∣∣∣
i j k
rx ry rz
Fx Fy Fz

∣∣∣∣∣∣
= (ryFz − rzFy) i− (rxFz − rzFx) j + (rxFy − ryFx) k (4.5.3)

http://engineeringstatics.org/ggb_dan-wrench-4_interactive.html
http://engineeringstatics.org/ggb_dan-wrench-4_interactive-if.html
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Here, rx, ry, and rz are components of the vector describing the distance
from the point of interest to the force. Fx, Fy, and Fz are components of the
force. The resulting moment has three components.

Mx = (ryFz − rzFy)

My = (rxFz − rzFx)

Mz = (rxFy − ryFx).

These represent the component moments acting around each of the three coordi-
nate axes. The magnitude of the resultant moment can be calculated using the
three-dimensional Pythagorean Theorem.

M = |M| =
√

Mx
2 +My

2 +Mz
2 (4.5.4)

It is important to avoid three common mistakes when setting up the cross
product.

• The order must always be r× F, never F× r. The moment arm r appears
in the middle line of the determinant and the force F on the bottom line.

• The moment arm r must always be measured from the moment center to
the line of action of the force. Never from the force to the point.

• The signs of the components of r and F must follow those of a right-hand
coordinate system.

In two dimensions, rz and Fz are zero, so (4.5.3) reduces to

M = r× F

=

∣∣∣∣∣∣
i j k
rx ry 0

Fx Fy 0

∣∣∣∣∣∣
= (rxFy − ryFx) k. (4.5.5)

This is just the vector equivalent of Varignon’s Theorem in two dimensions,
with the correct signs automatically determined from the signs on the scalar
components of F and r.

4.5.2 Moment about a Point
The next two interactives should help you visualize moments in three dimensions.

The first shows the force vector, position vector and the resulting moment
all placed at the origin for simplicity. The moment is perpendicular to the plane
containing F and r and has a magnitude equal to the ‘area’ of the parallelogram
with F and r for sides.
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Figure 4.5.2 Moment about the origin.
The second interactive shows a more realistic situation. The moment center

is at arbitrary point A, and the line of action of force F passes through arbitrary
points P1 and P2. The position vector r is the vector from A to a point on the
line of action, and the force F can be slid anywhere along that line.

Standalone
Embed

Figure 4.5.3 Moment about an arbitrary point.

http://engineeringstatics.org/ggb_3d-moment-about-origin_interactive.html
http://engineeringstatics.org/ggb_3d-moment-about-origin_interactive-if.html
http://engineeringstatics.org/ggb_3d-moment-about-arbitrary-point_interactive.html
http://engineeringstatics.org/ggb_3d-moment-about-arbitrary-point_interactive-if.html
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Example 4.5.4 3D Moment about a Point.

z

x

y
0.9 m

1.1 m

1.0 m

0.4 m

A

O

D

B

C

2 kN

A thin plate OABC sits in the xy
plane. Cable BD pulls with a tension
of 2 kN through a frictionless ring at
point D. Find the moment caused by
the tension force around point O.

Solution. Start the problem by using the position information and ten-
sion magnitude to find the force vector FBD. This will be done in three
steps:

1. Find the position vector BD: Find position vectors by either sub-
tracting the start-point coordinates from the end-point coordinates
or focusing on the changes in the position components from B to D.

BD = D − B

= (−0.9, 1.1, 0) m− (0.4, 0, 1.0) m
= ⟨1.3,−1.1, 1⟩ m

2. Find the unit vector of BD: Compute a unit vector by dividing BD
by the total length of BD.

BD = |BD| =
√

1.32 + (−1.1)2 + 1.02

= 1.975 m

B̂D =
BD
BD

=
⟨1.3,−1.1, 1⟩ m

1.975 m
= ⟨0.658− 0.5570.506⟩

Note that B̂D is unitless and is the pure direction of BD.

3. Multiply the unit vector by force magnitude: Now multiply B̂D by
the 2 kN force magnitude to find the force components.

FBD = FBD(B̂D)
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= 2 kN ⟨0.658,−0.557, 0.506⟩
= ⟨1.317,−1.114, 1.013⟩ kN

Next, find the moment arm from point O to the line of action of the force.
There are two obvious options for moment arms, either rOB or rOB. To
demonstrate how both moment arms give the same answer, solutions for
both moment arms will be shown.
Option 1: Moment using rOB

z

x

y
0.9 m

1.1 m

1.0 m

0.4 m

A

O

D

B

C

rOB

2 kN

• Moment arm rOB starts at the point we are taking the moment
around, O, and ends at the point B.

OB = B −O

= (−0.9, 1.1, 0) m− (0, 0, 0) m
= ⟨−0.9, 1.1, 0⟩ m

• Cross rOB with FBD to find the moment of FBD about point O.

MO = rOB × FBD

=

∣∣∣∣∣∣
i j k
−0.9 1.1 0

1.317 −1.114 1.013

∣∣∣∣∣∣
= ⟨1.114, 0.911,−0.446⟩ kN

Option 2: Moment using rOD :
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z

x

y
0.9 m

1.1 m

1.0 m

0.4 m

A

O

D

B

C

2 kN

rOD

• Moment arm rOD starts at the point we are taking the moment
around, O, and ends at the point D.

OD = D −O

= (0.4, 0, 1.0) m− (0, 0, 0) m
= ⟨0.4, 0, 1.0⟩ m

• Cross rOD with FBD to find the moment of FBD about point O.

MO = rOD × FBD

=

∣∣∣∣∣∣
i j k
0.4 0 1.0

1.317 −1.114 1.013

∣∣∣∣∣∣
= ⟨1.114, 0.911,−0.446⟩ kN

It is worth your effort to compute moments both ways for this example, or
another problem, to prove to yourself that the answers work out exactly
the same with different moment arms. Technically, you could select a
position vector from anywhere on line BD and get the correct answer, but
rOB or rOB are the only two between defined points in this problem.
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z

x

y
0.9 m

1.1 m

1.0 m

0.4 m

A

O

D

B

C

rOB

2 kN

MO

Drawing MO, demonstrates that a moment vector direction is both 1) the
axis of rotation caused by TBD around point O, with the moment aligning
to your thumb and the moment rotating around your fingers from the right-
hand rule and 2) that MO is perpendicular to the plane formed by TBD

and TBD. Recall that all cross products result in vectors perpendicular to
the two crossed vectors.

4.5.3 Moment about a Line
In three dimensions, the moment of a force about a point can be resolved into
components about the x, y and z axes. The moment produces a rotational
tendency about all three axes simultaneously, but only a portion of the total
moment acts about any particular axis.

We are often interested in finding the effect of a moment about a specific line
or axis. For example, consider the moment created by a push on a door handle.
Unless you push with a force exactly perpendicular to the hinge, only a portion
of the total moment you produce will act around the hinge axis and be effective
to open the door. The moment we are looking for is the vector projection of
the moment onto the axis of interest. Vector projections were first discussed in
Subsection 2.7.4.
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Figure 4.5.5 Moment on a hinge.
The axis of interest does not need to be a coordinate axis. This interactive

shows the projection of moment M on a line passing through points A and B.

Standalone
Embed

Figure 4.5.6 Moment of a force about a line
To find the moment of a force about a line, three vectors are required:

• û, a unit vector pointing in the direction of the line or axis of interest.

• r, a position vector from any point on the line of interest to any point on
the line of action of the force.

• F, the force vector. If you have multiple concurrent forces, you can treat
them individually or add them together first and find the moment of the
resultant.

With these vectors known, calculating the moment combines skills you al-
ready have learned:

• finding the moment of a force about a point using the cross product, (4.5.1).

M = (r× F).

• finding the scalar projection of one vector onto another vector using the
dot product, (2.7.10)

∥ proju M∥ = û ·M

http://engineeringstatics.org/ggb_3d-moment-door_interactive.html
http://engineeringstatics.org/ggb_3d-moment-door_interactive-if.html
http://engineeringstatics.org/ggb_3d-moment-about-line_interactive.html
http://engineeringstatics.org/ggb_3d-moment-about-line_interactive-if.html
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This combined dot and cross product is a signed scalar value called the
scalar triple product. A positive sign indicates that the moment vector
points in the positive û direction.

• and multiplying a scalar projection by a unit vector to find the vector
projection, (2.7.11)

Mû = ∥ proju M∥ û. (4.5.6)

Carrying these three operations out produces a vector Mû that is the compo-
nent of moment M along a line in the û direction.

The scalar triple product can be calculated efficiently in a single step by
evaluating a 3 × 3 determinant consisting of the components of û in the top row,
the components of a position vector r in the middle row, and the components of
the F in the bottom row using the augmented determinant method Figure 2.8.6.

∥ proju M∥ = û · (r × F)

=

∣∣∣∣∣∣
ux uy uz

rx ry rz
Fx Fy Fz

∣∣∣∣∣∣
= (ryFz − rzFy) ux + (rzFx − rxFz) uy + (rxFy − ryFx) uz

To find the vector projection along the selected axis, multiply this value by
the unit vector for the axis, equation (4.5.6).

4.6 Couples

Key Questions

• What makes a couple different than a typical r× F moment?

• Why is a couple considered a pure moment?

• If a couple is applied about the point we are summing moments,
does it still need to be included in the sum of moments equation?

The moments we have considered so far were all caused by single forces
producing rotation about a moment center. In this section, we will consider
another type of moment, called a couple.

A couple consists of two parallel forces, equal in magnitude, opposite in
direction, and non-coincident. Couples are special because the pair of forces
always cancel each other, which means that a couple produces a rotational effect
but never translation. For this reason, couples are sometimes referred to as “pure
moments.” The strength of the rotational effect is called the moment of the
couple or the couple-moment.
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When a single force causes a moment about a point, the magnitude depends
on the magnitude of the force and the location of the point. In contrast, the
moment of a couple is the same at every point and only depends on the magnitude
of the opposite forces and the distance between them.

For example, consider the interactive where two equal and opposite forces
with different lines of action form a couple. The moment of this couple is found
by summing the moments of the two forces about arbitrary moment center A,
applying positive or negative signs for each term according to the right-hand
rule. The moment of the couple is always

M = Fd⊥ (4.6.1)

where d⊥ is the perpendicular distance between the lines of action of the forces.

Standalone
Embed

Figure 4.6.1 Moment of a couple.
In two dimensions, couples are represented by a curved arrow indicating the

direction of the rotational effect. Following the right-hand rule, the value will
be positive if the moment is counter-clockwise and negative if it is clockwise. In
three dimensions, a couple is represented by a normal vector arrow.

When adding moments to find the total or resultant moment, you must
include couple-moments as well the r× F moments. In equation form, we could
express this as:

ΣMP = Σ(r× F) + Σ(Mcouple)

Thinking Deeper 4.6.2 Location Independence.

In this section we have shown that couples produce the same moment at
every point on the body. This means that the external effect of couples
is location independent. Because the moment of a couple is location inde-
pendent, the moment vector is not bound to any particular point and for
this reason is a free vector.
We will learn in Chapter ?? that moving a couple around on a rigid body
does affect the internal loads or stresses inside a body, but changing the
location of a couple does not change the external loading or reactions.

http://engineeringstatics.org/couple_interactive.html
http://engineeringstatics.org/couple_interactive-if.html
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4.7 Equivalent Transformations

Key Questions

• What is an equivalent transformation?

• What are some examples of equivalent transformations?

• What are external effects?

An equivalent transformation occurs when a loading on an object is replaced
with another loading that has the same external effect on the object. By external
effect, we mean the response of the body that we can see from the outside, with
no consideration of what happens to it internally. If the object is a free body, the
external effect would be translation and rotation. In statics, since objects are
not accelerating, the external effect really means the reactions at the supports
required to maintain equilibrium. The external effects will be exactly the same
before and after an equivalent transformation.

Equivalent transformation permits us to swap out one set of forces with
another one without changing the fundamental physics of the situation. This is
usually done to simplify or clarify the situation, or to give you an alternate way
to think about, understand, and solve a mechanics problem.

You already know several equivalent transformations although we have not
used this terminology before. Here are some transformations you have applied
previously.

Vector Addition. When you add forces together using the rules of vector
addition, you are performing an equivalent transformation. You can swap out
two or more components and replace them with a single equivalent resultant
force.

Any number of concurrent forces can be added together to produce a single
resultant force. By definition, the lines of action of concurrent forces all intersect
at a common point. The resultant must be placed at this intersection point in
order for this replacement to be equivalent. This is because before and after the
replacement, the moment about the intersection point is zero. If the resultant
was placed somewhere else, that would not be true.

Replacing a Force with its Component. Resolving forces into components
is also an equivalent transformation, as it is the inverse operation of vector ad-
dition. The components are usually orthogonal and in the coordinate directions,
or in a given plane and perpendicular to it, but any combination of force com-
ponents that add to the original force is equivalent.
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Figure 4.7.1 Equivalent transformations of vectors
In this diagram,

F1 + F2 = F = (F ; θ) = ⟨F cos θ, F sin θ⟩.

The effects of the force in the x, y and (in three dimensions the z) directions
remain the same, and by Varignon’s theorem, we know that the moment these
forces make about any point will also be the same.

An interesting special case occurs when two forces are equal and opposite
and have the same line of action. When these are added together, they cancel
out, so replacing these two forces with nothing is an equivalent transformation.
The opposite is true as well, so you can make two equal and opposite forces
spontaneously appear at a point if you wish.

Thinking Deeper 4.7.2 Internal Effects.

We made a point of saying that equivalent systems of force have the same
external effect on the body. This implies that there may be some other
effects that are not the same. As you will see in Chapter ??, we sometimes
need to consider internal forces and moments. These are the forces inside
a body that hold all the parts of the object to each other, otherwise, it
would break apart and fail. Although the external effects are the same for
all equivalent systems, the internal forces depend on the specifics of how
the loads are applied.
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Let’s imagine that you have gone
off-roading and have managed to
get your Jeep stuck in the mud. You
have two basic options to get it out:
you can pull it out using the winch
on the front bumper, or you can ask
your friend to push you out with
his truck. Both methods (assum-
ing that they apply forces with the
same magnitude, direction and line
of action) are statically equivalent,
and both will equally move your ve-
hicle forward.
The difference is what might happen to your vehicle. With one method
there’s a danger that you will rip your front bumper off, with the other,
you might damage your rear bumper. These are the internal effects and
they depend on where the equivalent force is applied. These forces are
necessary to maintain rigidity and hold the parts of the body together.

Sliding a force along its line of action. Sliding a force along its line of
action is an equivalent transformation because sliding a force does not change
its magnitude, direction or the perpendicular distance from the line of action to
any point, so the moments it creates do not change either. This transformation
is called the “Principle of Transmissibility”.

Figure 4.7.3 Sliding a vector along its line of action

Replacing a couple with couple-moment or vice-versa. A couple, de-
fined as “two equal and opposite forces with different lines of action,” pro-
duces a pure turning action that is equivalent to a concentrated moment, called
the couple-moment. Couples and couple-moments have no translational effect.
Couple-moments are free vectors, which means that they are not bound to any
point. Their external effect is on the entire body and is the same regardless of
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where it is applied.
This means that you are free to swap out a couple for its couple-moment, or

swap a couple-moment for a couple that has the same moment, and you may
put the replacement anywhere on you please and it will still be equivalent.

The diagram shows a series of equivalent transformations of a couple.

Figure 4.7.4 Equivalent transformations of couples
Concentrated moments are free vectors, which you may draw the circular

arrow anywhere you like on the body. In other words, moving a concentrated
moment from one point to another is an equivalent transformation. Remember
though, this equivalence only applies to the external effects. What happens
inside the body definitely does depend on the specific point where the moment
is applied.

Adding moments to produce a resultant moment. If more than one
couple-moment or concentrated moment acts on an object the situation may be
simplified by adding them together to produce one resultant moment, MR. The
standard rules of vector addition apply.

In two-dimensional problems moments are either clockwise or counter-clockwise,
so they may be considered scalar values and added algebraically. Give counter-
clockwise moments a positive sign and clockwise moments a negative sign ac-
cording to the right-hand rule sign convention. If this is done, the sign of the
resultant moment will indicate the direction of the net moment. You can use
the right-hand rule to establish the direction of the moment vector, which will
point into or out of the page.

MR = ΣM
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Example 4.7.5 Equivalent Moment.

Two concentrated moments and a couple are
acting on the object shown. Given: M1 =
400 N ·m, M2 = 200 N ·m, F = 40 N and
d = 2 m.
Replace these with a single, equivalent con-
centrated moment, and give the magnitude
and direction of your result.

Solution. First, replace the couple with an equivalent couple, M3, the
magnitude of which is

M3 = Fd⊥

= Fd sin 60◦

= 69.3 N·m

By observation, this is a counter-clockwise moment as is M2. M1 is clock-
wise. Summing the scalar magnitudes gives the resultant moment. The
signs of the terms are assigned according to the sign convention: positive
if counter-clockwise, negative if clockwise.

MR = ΣM

= M1 +M2 +M3

= −400 N·m + 200 N·m + 69.3 N·m
= −130.7 N·m

MR = 130.7 N·m clockwise

Resolving a moment into components. For three-dimensional moment
vectors, another potential equivalent transformation is to resolve a moment vec-
tor into components. These may be orthogonal components in the x, y, and z
directions, or components in a plane and perpendicular to it, or components in
some other rotated coordinate system.
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4.8 Statically Equivalent Systems

Key Questions

• What is an equivalent system?

• What is a resultant force?

• What is a resultant moment?

• Do you have to include both r×F moments and couples to find the
resultant moment?

• How can you find the simplest equivalent system?

• When will the simplest equivalent system be a wrench?

• How can you determine if two loading systems are statically equiva-
lent?

A loading system is a combination of load forces and moments that act on an
object. It can be as simple as a single force, or as complex as a three-dimensional
combination of many force and moment vectors.

You will see that any loading systems may be replaced with a simpler stati-
cally equivalent system consisting of one resultant force at a specific point and one
resultant moment by performing a series of equivalent transformations. Force
system resultants provide a convenient representation for complex force interac-
tions at engineering connections that we will rely on later in a variety of contexts.
For now, we will focus on the details of reducing a system to a single force and
couple.

Depending on the original loading system, the resultant force, the resultant
moment, or both may be zero. If they are both zero, it indicates that the object
is in equilibrium under this load condition. If they are non-zero, the supports will
need to provide an equal and opposite reaction to put the object into equilibrium.

The resultant force acting on a system, R, can be found from adding the
individual forces, Fi, such that

R =
∑

F = F1 + F2 + F3 + ....

The resultant moment, MO, about a point O, can be found from adding
all of the moments M, about that point, including both r × F moments and
concentrated moments.

MO =
∑

Mi = M1 + M2 + M3 + ...

It is often more convenient to work with the scalar components of the resul-
tant vectors since they separate the effects in the three coordinate directions.



CHAPTER 4. MOMENTS AND STATIC EQUIVALENCE 135

Rx = ΣFx MOx = ΣMx

Ry = ΣFy MOy = ΣMy

Rz = ΣFz MOz = ΣMz

Standalone
Embed

Figure 4.8.1 Statically equivalent systems

Force-Couple Systems. One transformation you might want to make is to
move a force to another location. While sliding a force along its line of action
is fine, moving a force to another point changes its line of action and thus its
rotational effect on the object, so moving a force to a new line of action is not
an equivalent transformation.

Consider the cantilever beam below. In diagram (a), the load P is at the end
of the beam, and in (b) it has been moved to the center. The external effects are
shown in (c) and (d). Although the vertical reaction force is the P in both cases,
the reaction moment at point O is 2Pℓ in the first case and Pℓ in the second.

http://engineeringstatics.org/ggb_resultants_interactive.html
http://engineeringstatics.org/ggb_resultants_interactive-if.html
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(a) Force P at end of beam. (b) Force P moved to center of beam.

(c) FBD and reactions for (a). (d) FBD and reactions for (b).

Figure 4.8.2 Moving a force is not an equivalent transformation
You can move a force to a new line of action in an equivalent fashion if you

add a “compensatory couple” to undo the effect of changing the line of action.
This can be accomplished with a series of individual equivalent transformations
as shown in the diagram below. To move P to another location, first add two
equal and opposite forces where you want the force to be, as in (b). Then
recognize the couple you have formed (c), and replace it with an equivalent
couple-moment. The result of this process is the equivalent force-couple system
shown in diagram (d), which is statically equivalent to the original situation in
(a).
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(a) Original situation. (b) Add two equal and opposite forces
at midpoint.

(c) Recognize couple.
(d) Replace couple to produce equivalent
force-couple system, with the same reac-
tions as Figure 4.8.2(c).

Figure 4.8.3 Equivalent Force-couple system
Evaluating the moment at point O was an arbitrary choice. Any other point

would give the same result. For example, in the original situation (a) force P
makes a clockwise moment M = Pℓ about the midpoint. When the force is
moved to the center P creates no moment there, so a clockwise compensatory
couple with a magnitude of Pℓ must be added to maintain equivalence. This
is the same result as we found previously (d). The compensatory couple has
been drawn centered around the midpoint, but this too is arbitrary because
concentrated moments are free vectors and can be placed at any location.

Reduction of a complex system. Any loading system can be reduced to a
statically equivalent system consisting of single force and a single moment at a
specified point with the following procedure:

1. Determine the resultant moment about the specified point by considering
all forces and concentrated moments on the original system.

2. Determine the resultant force by adding all forces acting on the original
system.

3. Determine the resultant moment about a point in the original system

4. Create the statically equivalent system by replacing all loads with the
resultant force and the resultant moment at the selected point.
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Example 4.8.4 Eccentric loading.

An vertical column is supporting an eccentric load
as shown.
Replace this load with an equivalent force-couple
system acting at the center of the beam’s top sur-
face.

Solution. In order to move the vertical force 9 in to the left, a clockwise
couple M must be added to maintain equivalence, where

M = Pd

= (1200 lb)(9 in)
= 10, 800 in·lb
= 900 ft·lb.

Example 4.8.5 Equivalent Force-couple System.

Replace the system of forces in diagram (a) with an equivalent force-couple
system at A.
Replace the force-couple system at A with a single equivalent force and
specify its location.

(a) (b) (c)

Solution. The original system is shown in (a).
Since the F1 and F2 are parallel, the magnitude of the resultant force is
just the sum of the two magnitudes and it points down.

R = F1 + F2

The resultant moment about point A is

MA = F1d1 + F2(d1 + d2).

To create the equivalent system (b), the resultant force and resultant mo-
ment are placed at point A.
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The system in (b) can be further simplified to eliminate the moment at
MA, by performing the process in reverse.
In (c) we place the resultant force R a distance d away from point A
such that the resultant moment around point A remains the same. This
distance can be found using M = Fd.

d = MA/R

The systems in (a), (b), and (c) are all statically equivalent

In this example, we started with two forces. We have found two different stati-
cally equivalent systems; one with a force and a couple, the other with a single
force. This latter system is simpler than the original system.

It is important to note that static equivalence applies to external effects
only. When determining internal forces, such as the shear and bending moment
discussed in Section ?? or when considering non-rigid bodies, the original loading
system must be used.

Determining Equivalence. Two complex loading systems are equivalent if
they reduce to the same resultant force and the same resultant moment about
any arbitrary point.

Two loading systems are statically equivalent if
• The resultant forces are the equal

• The resultant moments about some point are equal
This process is illustrated in the following example.

Example 4.8.6 Finding Statically Equivalent Loads.

Which of the three loading systems shown are statically equivalent?

Figure 4.8.7

Solution.

1. Strategy.
Evaluate the resultant force and resultant moment for each case and
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compare. We choose to evaluate the resultant moment about point
A, though any other point would work.

2. For system (a).

R = ⟨−10, 0⟩ lb
MA = −80 + 6(10)

= −20 ft·lb

3. For system (b).

R = ⟨−20 + 10, 0⟩ lb
= ⟨−10, 0⟩ lb

MA = −120 + 12(20)− 6(10)

= 60 ft·lb

4. For system (c).

R = ⟨−10, 0⟩ lb
MA = −40 + 20 + 0(10)

= −20 ft·lb

Systems (a) and (c) are statically equivalent since R and MA are the same
in both cases. System (b) is not as its resultant moment is different than
the other two.

Any load system can be simplified to its resultant force R, and resultant
couple M, acting at any arbitrary point O. There are four common special cases,
which are worth highlighting individually.

Concurrent forces. When all forces in a system are concurrent, the resultant
moment about their common intersection point will always be zero. We then
need only find the resultant force and place it at the point of intersection. The
resultant moment about any other point is the moment of the resultant force R
about that point.

Parallel forces. When all forces in a system are parallel, the resultant force
will act in this direction with a magnitude equal to the sum of the individual
magnitudes. There will be no moment created about this axis, but we need to



CHAPTER 4. MOMENTS AND STATIC EQUIVALENCE 141

find the resultant moment about the other two rectangular axes. That is, if
all forces act in the x direction, we need only find the resultant force in the x
direction and the resultant moment about the y and z axes.

Coplanar forces. When all forces in a system are coplanar we need only
find the resultant force in this plane and the resultant moment about the axis
perpendicular to this plane. That is, if all forces exist in the x-y plane, we
need only to sum components in the x and y directions to find resultant force
R, and use these to determine the resultant moment about the z axis. All
two-dimensional problems fall into this category.

Wrench resultant. A wrench resultant is a special case where the resultant
moment acts around the axis of the resultant force. The directions of the resul-
tant force vector and the resultant moment vector are the same.

Figure 4.8.8 Wrench
Resultant

For example, if the resultant force is only in the x di-
rection and the resultant moment acts only around the
x axis, this is an example of a wrench resultant. An
everyday example is a screwdriver, where both the re-
sultant force and axis of rotation are in-line with the
screwdriver. A wrench resultant is considered positive if
the couple vector and force vector point in the same di-
rection, and negative if they point in opposite directions.

Any three-dimensional force-couple system may be reduced to an equivalent
wrench resultant even if the resultant force and resultant moment do not initially
form a wrench resultant.

To find the equivalent wrench resultant:

1. First, find the resultant force R and resultant moment M at an arbitrary
at arbitrary point, O. These need not act along the same axis.

2. Resolve the resultant moment into scalar components M∥ and M⊥, parallel
and perpendicular to the axis of the resultant force.

3. Eliminate M⊥ by moving the resultant force away from point O by distance
d = M⊥/R

The simplified system consists of moment M∥ and force R and acting distance
d away from point O. Since R and M∥ act along the same axis, the system has
been reduced to a wrench resultant. Wrench resultants are the most general way
to represent a complex force-couple system, but their utility is limited.
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4.9 Exercises (Ch. 4)

Standalone

http://engineeringstatics.org/numbas-chapter-4.html


Chapter 5

Rigid Body Equilibrium

This chapter will investigate the equilibrium of simple rigid bodies like your
book, phone, or pencil. The important difference between rigid bodies and the
particles of Chapter 3 is that rigid bodies have the potential to rotate around a
point or axis, while particles do not.

For rigid body equilibrium, we need to maintain translational equilibrium
with ∑

F = 0 (5.0.1)

and also maintain a balance of rotational forces and couple-moments with a new
equilibrium equation ∑

M = 0. (5.0.2)

5.1 Degree of Freedom
Degrees of freedom refers to the number of independent parameters or values
required to specify the state of an object.

The state of a particle is completely specified by its location in space, while
the state of a rigid body includes its location in space and also its orientation.

Two-dimensional rigid bodies in the
xy plane have three degrees of free-
dom. Position can be characterized
by the x and y coordinates of a point
on the object and orientation by angle
θz about an axis perpendicular to the
plane. The complete movement of the
body can be defined by two linear dis-
placements ∆x and ∆y, and one angu-
lar displacement ∆θz.

Figure 5.1.1 Two-dimensional rigid
bodies have three degrees of freedom.

144
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Three-dimensional rigid bodies have
six degrees of freedom, which can be
specified with three orthogonal coordi-
nates x, y and z, and three angles of ro-
tation, θx, θy and θz. Movement of the
body is defined by three translations
∆x, ∆y and ∆z, and three rotations
∆θx, ∆θy and θz.

Figure 5.1.2 Three-dimensional rigid
body have six degrees of freedom -
three translations and three rotations.

For a body to be in static equilibrium, all possible movements must be ad-
equately restrained. If a degree of freedom is not restrained, the body is in an
unstable state, free to move in one or more ways. Stability is highly desirable
for reasons of human safety, and bodies are often restrained by redundant re-
straints so that if one were to fail, the body would still remain stable. If the
restraints correctly interpreted, then equal constraints and degrees of freedom
create a stable system, and the values of the reaction forces and moments can
be determined using equilibrium equations. If the number of restraints exceeds
the number of degrees of freedom, the body is in equilibrium but you will need
techniques we won’t cover in statics to determine the reactions.

5.2 Free-Body Diagrams

Key Questions

• What are the five steps to create a free-body diagram?

• What are degrees of freedom, and how do they relate to stability?

• Which reaction forces and couple-moments come from each support
type?

• What are the typical support force components and couple-moment
components that can be modeled from the various types of supports?

Free body diagrams are the tool that engineers use to identify the forces and
moments that influence an object. They will be used extensively in statics, and
you will use them again in other engineering courses so your effort to master
them now is worthwhile. Although the concept is simple, students often need
help to draw them correctly.

Drawing a correct free-body diagram is the first and most important step
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in the process of solving an equilibrium problem. It is the basis for all the
equilibrium equations you will write; if your free-body diagram is incorrect, your
equations, analysis, and solutions will also be wrong.

A quality free-body diagram is neat, clearly drawn, and contains all the
information necessary to solve the equilibrium. You should take your time and
think carefully about the free-body diagram before you begin to write and solve
equations. A straightedge, protractor and colored pencils all can help. You will
inevitably make mistakes that will lead to confusion or incorrect answers; you
are encouraged to think about these errors and identify any misunderstandings
to avoid them in the future.

Every equilibrium problem begins by drawing and labeling a free-body diagram!

Creating Free Body Diagrams. The basic process for drawing a free-body
diagrams is

1. Select and isolate an object.
The “free-body” in free-body diagram means that the body to be analyzed
must be free from the supports that are physically holding it in place.
Simply sketch a quick outline of the object as if it is floating in space
disconnected from everything. Do not draw free-body diagram forces on
top of your problem drawing — the body needs to be drawn free of its
supports.

2. Select a reference frame.
Select a right-handed coordinate system to use as a reference for your
equilibrium equations. Even if you are using a horizontal x axis and vertical
y axis, indicate your coordinate system on your diagram.
Look ahead and select a coordinate system that minimizes the number of
unknown force components in your equations. The choice is technically
arbitrary, but a good choice will simplify your calculations and reduce
your effort. If you and another student pick different reference systems,
you should both get the same answer while expressing your work with
different components.

3. Identify all loads.
Add vector arrows representing the applied forces and couple moments of
acting on the body. These are often obvious. Include the body’s weight
if it is non-negligible. If a vector has a known line of action, draw the
arrow in that direction; if its sense is unknown, assume one. Every vector
should have a descriptive variable name and a clear arrowhead indicating
its direction.

4. Identify all reactions.
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Traverse the perimeter of the object and wherever a support was removed
when isolating the body, replace it with the forces and/or couple-moments
which it provides. Label each reaction with a descriptive variable name and
a clear arrowhead. Again, if a vector’s direction is unknown just assume
one.
The reaction forces and moments provided by common two-dimensional
supports are shown in Figure 5.2.1 and three dimensional support in Fig-
ure 5.2.2. Identifying the correct reaction forces and couple-moments com-
ing from supports is perhaps the most challenging step in the entire equi-
librium process.

5. Label the diagram.
Verify that every dimension, angle, force, and moment is labeled with
either a value or a symbolic name if the value is unknown. Supply the
information needed for your calculations, but don’t clutter the diagram
up with unneeded information. This diagram should be a stand-alone
presentation.

Drawing good free-body diagrams is surprisingly tricky and requires practice.
Study the examples, think hard about them, do lots of problems, and learn from
your errors.

Two-dimensional Reactions. Supports supply reaction forces and moment
which prevent bodies from moving when loaded. In the most basic terms, forces
prevent translation, and moments prevent rotation.

The reactions supplied by a support depend on the nature of the particular
support. For example in a top view, a door hinge allows the door to rotate
freely but prevents it from translating. We model this as a frictionless pin that
supplies a perpendicular pair of reaction forces, but no reaction moment. We
can evaluate all the other physical supports in a similar way to come up with the
table below. You will notice that some two-dimensional supports only restrain
one degree of freedom and others restrain up to three degrees of freedom. The
number of degrees of freedom directly correlates to the number of unknowns
created by the support.

The table below shows typical two-dimensional support methods and the
corresponding reaction forces and moments supplied each.
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Pin support Two unknowns

smooth
surface

roller rocker pinned
collar on
smooth rod

smooth pin
or roller
in slot

cable weightless link spring

force perpendicular to surface

tension or compression in line
with two-force member

frictionless pin
or hinge

Normal supports One unknown

Two-force member supports One unknown

two rectangular components
or force at unknown angle

Rough surface Two unknowns

friction and normal forces
or magnitude and directionbody contacting

rough surface

Fixed collar
on smooth rod

Two unknowns

collar slides
but cannot
rotate

normal force
and moment

Fixed support Three unknowns

welded, bolted,
or anchored

two rectangular
components and a

moment

Figure 5.2.1 Table of common two-dimensional supports and their representa-
tion on free-body diagrams.

Three-dimensional Reactions. The main added complexity with three-dimensional
objects is that there are more possible ways the object can move, and also more
possible ways to restrain it. The table below show the types of supports which
are available and the corresponding reaction forces and moment. As before, your
free-body diagrams should show the reactions supplied by the constraints, not
the constraints themselves.
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Two-force support One unknown Smooth surface One unknown

Free-axle bearing Four unknowns

Confined-axle bearing Five reactions

Square-shaft bearing

Ball & socket Three reactions

Five reactions Fixed support Six reactions

axle free to slide & rotate

axle/pin cannot slide but is free to rotate

square shaft free to slide, but cannot rotate body cannot slide & cannot rotate

ball cannot slide but is free to rotate

two-force member constrains translation smooth surface constrains translation

two reaction forces
perpendicular to axis,
three reaction moments

force perpendicular
to surface

hingesmooth pinthrust bearing

two reaction forces and
two reaction moments
perpendicular to axle,
plus axial reaction force

ball stays in socket
& is free to rotate

welded, bolted,
or anchored

three reaction forces and
three reaction moments

reaction force in-line
with two-force member

body contacts
smooth surface

two reaction forces and
two reaction moments
perpendicular to axle

three reaction
force components

roller on
smooth surface

square shaft
journal bearing

journal bearing

cable (or other
two-force member)

Figure 5.2.2 Table of common three-dimensional supports and their associated
reactions.

One new issue we face in three-dimensional problems is that reaction couples
may be available but not engaged.

A support which provides a non-zero reaction is said to be engaged. Picture
a crate sitting at rest on a horizontal surface with a cable attached to the top
of the crate. If the cable is slack, the reaction of the cable would be available
but not engaged. Instead, the floor would be supporting the full weight of the
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crate. If we were to remove the floor, the cable would be engaged and support
the weight of the crate.

N

W

T = 0

W

T = W

not engaged engaged

Figure 5.2.3 Available and Engaged reactions.
To get a feel for how reaction couples engage, pick up your laptop or a

heavy book and hold it horizontally with your left hand. Can you feel your
hand supplying an upward force to support the weight and a counter-clockwise
reaction couple to keep it horizontal? Now add a similar support by gripping
with your right hand. How do the forces and couple-moments change? You
should have felt the force of your left hand decrease as your right hand picked
up half the weight, and also noticed that the reaction couple from your left hand
was no longer needed.

Figure 5.2.4 One hand holding an object versus two hands holding the same
object.

The vertical force in your right hand engaged instead of the couple-moment
of your left hand. The reaction couples from both hands are available, but the
vertical forces engage first and are sufficient for equilibrium. This phenomena is
described by the saying “reaction forces engage before reaction couple-moments”.

Free-Body Diagram Examples. Given that there several options for repre-
senting reaction forces and couple-moments from a support, there are different,
equally valid options for drawing free-body diagrams. With experience you will
learn which representation to choose to simplify the equilibrium calculations.

Possible free-body diagrams for two common situations are shown in the next
two examples.
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Example 5.2.5 Fixed support.

The cantilevered beam is embedded
into a fixed vertical wall at A. Draw
a neat, labeled, correct free-body di-
agram of the beam and identify the
knowns and the unknowns.

15 kip

8 kip

30°

30 kip-ft

10
ft

6
ft

4
ft

A B C D

Solution.
Begin by drawing a neat rectangle
to represent the beam disconnected
from its supports, then add all the
known forces and couple-moments.
Label the magnitudes of the loads
and the known dimensions symboli-
cally.

30°B

C

D

Choose the standard xy coordinate system, since it aligns well with the
forces.
The wall at A is a fixed support which prevents the beam from translating
up, down, left or right, or rotating in the plane of the page. These con-
straints are represented by two perpendicular forces and a concentrated
moment, as shown in Figure 5.2.1. Label these unknowns as well.
The knowns in this problem are the magnitudes and directions of moment
C, forces B, and D and the dimensions of the beam. The unknowns are
the two force components Ax and Ay and the scalar moment MA caused
by the fixed connection. If you prefer, you may represent force A as a
force of unknown magnitude acting at an unknown direction. Whether
you represent it as x and y components or as a magnitude and direction,
there are two unknowns associated with force A.
The three unknown reactions can be found using the three independent
equations of equilibrium we will discuss later in this chapter.

Example 5.2.6 Frictionless pin and roller.

The beam is supported by a friction-
less pin at A and a rocker at D.
Draw a neat, labeled, correct free-
body diagram of the beam and iden-
tify the knowns and the unknowns.

12 kN

30°

45°
24 kN-m

5
m

3 m2 m

A B C D

Solution. In this problem, the knowns are the magnitude and direction
of force B and moment C and the dimensions of the beam.
The constraints are the frictionless pin at A and the rocker at D. The
pin prevents translation but not rotation, which means two it has two
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unknowns, represented by either magnitude and direction, or by two or-
thogonal components. The rocker provides a force perpendicular to the
surface it rests on, which is 30◦ from the horizontal. This means that the
line of action of force D is 30◦ from the vertical, giving us its direction but
not its sense or magnitude
To draw the free-body diagram,
start with a neat rectangle to repre-
senting the beam disconnected from
its supports, then draw and label
known force B and moment C and
the dimensions.

30°

B
C

D

45°

Add forces Ax and Ay representing vector A and force D at D, acting 30◦

from the vertical.
When a force has a known line of action as with force D, draw it acting
along that line; don’t break it into components. When it is not obvious
which way a reaction force actually points along its lines of action, just
make your best guess and place an arrowhead accordingly. Your calcula-
tions will confirm or refute your guess later.
As in the previous example, you
could alternately represent force A
as an unknown magnitude acting in
an unknown direction, though there
is no particular advantage to doing
so in this case.

30°

B
C

D

45°

5.3 Equations of Equilibrium

Key Questions

• What is the definition of static equilibrium?

• How do I choose which are the most efficient equations to solve two-
dimensional equilibrium problems?

In statics, our focus is on systems where both linear acceleration a and angu-
lar acceleration α are zero. These systems are frequently stationary, but could
be moving with constant velocity.

Under these conditions Newton’s Second Law for translation reduces to∑
F = 0, (5.3.1)

and, Newton’s second law for rotation gives the similar equation∑
M = 0. (5.3.2)
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The first of these equations requires that all forces acting on an object balance
and cancel each other out, and the second requires that all moments balance as
well. Together, these two equations are the mathematical basis of this course
and are sufficient to evaluate equilibrium for systems with up to six degrees of
freedom.

These are vector equations; hidden within each are three independent scalar
equations, one for each coordinate direction.

∑
F = 0 =⇒


ΣFx = 0

ΣFy = 0

ΣFz = 0

∑
M = 0 =⇒


ΣMx = 0

ΣMy = 0

ΣMz = 0

(5.3.3)

Working with these scalar equations is often easier than using their vector equiv-
alents, particularly in two-dimensional problems.

In many cases we do not need all six equations. We saw in Chapter 3 that
particle equilibrium problems can be solved using the force equilibrium equation
alone, because particles have, at most, three degrees of freedom and are not
subject to any rotation.

To analyze rigid bodies, which can rotate as well as translate, the mo-
ment equations are needed to address the additional degrees of freedom. Two-
dimensional rigid bodies have only one degree of rotational freedom, so they
can be solved using just one moment equilibrium equation, but to solve three-
dimensional rigid bodies, which have six degrees of freedom, all three moment
equations and all three force equations are required.

5.4 2D Rigid Body Equilibrium
Two-dimensional rigid bodies have three degrees of freedom, so they only require
three independent equilibrium equations to solve. The six scalar equations of
(5.3.3) can easily be reduced to three by eliminating the equations which refer
to the unused z dimension. For objects in the xy plane there are no forces acting
in the z direction to create moments about the x or y axes, so the reduced set
of three equations is

{1} =


∑

Fx = 0∑
Fy = 0∑
MA = 0

where the subscript z has been replaced with a letter to indicate an arbitrary
moment center in the xy plane instead of a perpendicular z axis.

This is not the only possible set of equilibrium equations. Either force equa-
tion can be replaced with a linearly independent moment equation about a point
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of your choosing 1, so the other possible sets are

{2} =


∑

Fx = 0∑
MB = 0∑
MA = 0

{3} =


∑

MC = 0∑
Fy = 0∑
MA = 0

{4} =


∑

MC = 0∑
MB = 0∑
MA = 0

For set four, moment centers A, B, and C must form a triangle to ensure the
three equations are linearly independent.

You have a lot of flexibility when solving rigid-body equilibrium problems. In
addition to choosing which set of equations to use, you are also free to rotate the
coordinate system to any orientation you like, pick different points for moment
centers, and solve the equations in any order or simultaneously.

This freedom raises several questions. Which equation set should you choose?
Is one choice ‘better’ than another? Why bother rotating coordinate systems?
How do you select moment centers? Students want to know “how to solve the
problem,” when in reality there are many ways to do it.

The actual task is to choose an efficient approach and carry it out. An efficient
solution is one which avoids mathematical complications and makes the problem
easy to solve. Complications include unpleasant geometries, unnecessary algebra,
and particularly simultaneous equations, which are algebra intensive and error
prone.

So how do you set up an efficient approach? First, stop, think, and look for
opportunities to make the solution more efficient. Here are some recommenda-
tions.

1. Equation set one is usually a good choice and should be considered first.

2. Inspect your free-body diagram and identify the unknown values in the
problem. These may be magnitudes, directions, angles or dimensions.

3. Align the coordinate system with at least one unknown force.

4. Take moments about the point where the lines of action of two unknown
forces intersect, which eliminates them from the equation.

5. Solve equations with one unknown first.
1Labels A, B and C in these equations are representative. They don’t have to correspond

to points A, B and C on your problem.
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Example 5.4.1 Pin and Roller.

The L-shaped body is supported
by a roller at B and a frictionless
pin at A. The body supports a
250 lb vertical force at C and a
500 ft·lb couple-moment at D. De-
termine the reactions at A and B.

3 ft

250 lb

60°

4 ft

500 ft-lb

1.5 ft

1.5 ft

A

B C

D

This problem will be solved three different ways to demonstrate the ad-
vantages and disadvantages of different approaches.
Solution 1.
Solutions always start with a free-
body diagram, showing all forces
and moments acting on the ob-
ject. Here, the known loads C =
250 lb (down) and D = 500 ft·lb
(CCW) are red, and the unknown
reactions Ax, Ay and B are blue.

250 lb

60°

500 ft-lb

B C

D

The force at B is drawn along its known line-of-action perpendicular to
the roller surface, and drawn pointing up and right because that will op-
pose the rotation of the frame about A caused by load C and moment D.
The force at A is represented by unknown components Ax and Ay. The
sense of these components is unknown, so we have arbitrarily assigned the
arrowheads pointing left and up.
We have chosen the standard coordinate system with positive x to the
right and positive y pointing up, and resolved force A into components in
the x and y directions.
The magnitude of force B is unknown but its direction is known, so the x
and y components of B can be expressed as

Bx = B sin 60◦ By = B cos 60◦.

We choose to solve equation set {A}, and choose to take moments about
point A, because unknowns Ax and Ay intersect there. Substituting the
variables into the equation and solving for the unknowns gives∑

Fx = 0

Bx − Ax = 0

Ax = B sin 60◦ (1)

∑
Fy = 0
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By − C + Ay = 0

Ay = C − B cos 60◦ (2)

∑
MA = 0

−Bx(3)− By(7) + C(4) +D = 0

3B cos 60◦ + 7B sin 60◦ = 4C +D

B(3 sin 60◦ + 7 cos 60◦) = 4C +D

B =
4C +D

6.098
(3)

Of these three equations only the third can be evaluated immediately,
because we know C and D. In equations (1) and (2) unknowns Ax and
Ay can’t be found until B is known. Inserting the known values into (3)
and solving for B gives

B =
4(250) + 500

6.098

=
1500 ft·lb
6.098 ft

= 246.0 lb

Now with the magnitude of B known, Ax and Ay can be found with (1)
and (2).

Ax = B sin 60◦

= 246.0 sin 60◦

= 213.0 lb

Ay = C − B cos 60◦

= 250− 246.0 cos 60◦

= 127.0 lb

The positive signs on these values indicate that the directions assumed on
the free-body diagram were correct.
The magnitude and direction of force A can be found from the scalar
components Ax and Ay using a rectangular to polar conversion.

A =
√
A2

x + A2
y = 248.0 lb

θ = tan−1

∣∣∣∣Ay

Ax

∣∣∣∣ = 30.8◦
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The final values for A and B, with angles measured counter-clockwise from
the positive x axis are

A = 248.0 lb ∡ 149.2◦,

B = 246.0 lb ∡ 30°.
This solution demonstrates a fairly standard approach appropriate for
many statics problems which should be considered whenever the free-body
diagram contains a frictionless pin. Start by taking moments there.
Solution 2.

In this solution, we have rotated
the coordinate system 30◦ to align
it with force B and also chosen
the components of force A to
align with the new coordinate sys-
tem.

250 lb

60°

500 ft-lb

B C

D

30°

There is no particular advantage to this approach over the first one, but
with two unknown forces aligned with the x′ direction, Ay′ can be found
directly after breaking force C into components.∑

Fx′ = 0

B − Cx′ + Ax′ = 0

Ax′ = −B + C sin 30◦ (1)

∑
Fy′ = 0

−Cy′ + Ay′ = 0

Ay′ = C cos 30◦ (2)

∑
MA = 0

−Bx(3)− By(7) + C(4) +D = 0

3B cos 60◦ + 7B sin 60◦ = 4C +D

B(3 cos 60◦ + 7 sin 60◦) = 4C +D

B =
4C +D

7.56
(3)

Solving equation (2) yields

Ay′ = 216.5 lb.
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Solving equation (3) yields the same result as previously

B = 246.0 lb.

Substituting B and C into equation (1) yields

Ax′ = −B + C sin 30◦

= −246.0 + 250 sin 30◦

= −121.0 lb

The negative sign on this result indicates that our assumed direction for
Ax′ was incorrect, and that force actually points 180◦ to the assumed
direction.
Resolving the Ax′ and Ay′ gives the magnitude and direction of force A.

A =
√

A2
x′ + A2

y′ = 248.0 lb

θ = tan−1

∣∣∣∣Ay

Ax

∣∣∣∣ = 60.8◦

α = 180◦ − (θ − 30◦) = 149.2◦

Again, the final values for A and B, with angles measured counter-
clockwise from the positive x axis are

A = 248.0 lb ∡ 149.2◦,

B = 246.0 lb ∡ 30°
This approach was slightly more difficult than solution one because of
the additional trigonometry involved to find components in the rotated
coordinate system.
Solution 3.

For this solution, we will use the
same free-body diagram as solu-
tion one, but will use three mo-
ment equations, about points B,
C and D.

250 lb

60°

500 ft-lb

B C

D

∑
MB = 0

−Ax(3) + Ay(7)− C(3) +D = 0
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−3Ax + 7Ay = 250 (1)

∑
MC = 0

−Ax(3) + Ay(4)− By(3) +D = 0

−3Ax + 4Ay − 3B cos 60◦ = −D
3Ax − 4Ay + 1.5B = 500 (2)

∑
MD = 0

−Ax(1.5)− Bx(1.5)− By(7) + C(4) +D = 0

1.5Ax + 1.5B sin 60◦ + 7B cos 60◦ = 4C +D

1.5Ax + 4.799B = 1500 (3)

This set of three equations and three unknowns can be solved with some
algebra.
Adding (1) and (2) gives

3Ay + 1.5B = 750 (4)

Dividing equation (2) by 2 and subtracting it from (3) gives

2Ay + 4.049B = 1250 (5)

Multiplying (4) by 2/3 and subtracting from (5) eliminates Ay and gives

3.049B = 750

B = 246.0 lb,

the same result as before.
Substituting B into (3) gives Ax = 213.0 lb, and substituting this into (1)
gives Ay = 127.0 lb, again the same result as before.
An alternate approach is to set these three equations up for a matrix
solution and use technology to do the algebra, as done here with Sage.−3 7 0

3 −4 1.5

1.5 0 4.799

Ax

Ay

B

 =

 250

500

1500


A = Matrix ([[-3,7,0],[3,-4, 1.5] ,[1.5 ,0 ,4.799]])
B = vector ([250, 500, 1500])
x = A.solve_right(B)
x
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(213.020662512299 , 127.008855362414 , 245.982289275172)

This is a good example of an inefficient solution because of all the algebra
involved. The issue here was the poor choice of B, C and D as moment
centers. Whenever possible you should take moments about a point where
the line of action of two unknowns intersect as was done in solution one.
This gives a moment equation which can be solved immediately for the
third unknown.

5.5 3D Rigid Body Equilibrium

Key Questions

• What are the similarities and differences between solving two-
dimensional and three-dimensional equilibrium problems?

• Why are some three-dimensional reaction couple-moments “available
but not engaged”?

• What kinds of problems are solvable using linear algebra?

Three-dimensional systems are closer to reality than two-dimensional sys-
tems and the basic principles to solving both are the same, however they are
generally harder solve because of the additional degrees of freedom involved and
the difficulty visualizing and determining distances, forces and moments in three
dimensions.

Three-dimensional problems are usually solved using vector algebra rather
than the scalar approach used in the last section. The main differences are that
directions are described with unit vectors rather than with angles, and moments
are determined using the vector cross product rather scalar methods. Because
they have more possible unknowns it is harder to find efficient equations to solve
by hand. A problem might involve solving a system of up to six equations and
six unknowns, in which case it is best solved using linear algebra and technology.

Resolving Forces and Moments into Components. To break two-dimensional
forces into components, you likely used right-triangle trigonometry, sine and
cosine. However, three-dimensional forces will likely need to be broken into
components using Section 2.5.

When summing moments, make sure to consider both the r × F moments
and also the couple-moments with the following guidance:

1. First, choose any point in the system to sum moments around.

2. There are two general methods for summing the r × F moments. Both
techniques will give you the same set of equations.



CHAPTER 5. RIGID BODY EQUILIBRIUM 161

(a) Sum moments around each axis.
For relatively simple systems with few position and force vector com-
ponents, you can find the cross product for each non-parallel position
and force pair. Using this method requires you to resolve the direc-
tion of each cross product pair using the right-hand rule as covered
in Chapter 4. Recall that there are up to six pairs of non-parallel
components that you need to consider.

(b) Sum all moments around a point using vector determinants.
Choose a point in the system which is on the line of action of as many
forces as possible, then set up each cross product as a determinant.
After computing the components coming from each determinant, com-
bine the x, y, and z terms into each of the ΣMx = 0, ΣMy = 0, and
ΣMz = 0 equations.

3. Finally, add the components of any couple-moments into the corresponding
ΣMx = 0, ΣMy = 0, and ΣMz = 0 equations.

Solving for unknown values in equilibrium equations. Once you have
formulated ΣF = 0 and ΣM = 0 equations in each of the x, y and z directions,
you could be facing up to six equations and six unknown values.

Frequently these simultaneous equation sets can be solved with substitution,
but it is often be easier to solve large equation sets with linear algebra. Note that
the adjective “linear” specifies that the unknown values must be linear terms,
which means that each unknown variable cannot be raised to a exponent, be an
exponent, or buried inside of a sin or cos function. Luckily, most unknowns in
equilibrium are linear terms, except for unknown angles. If you are not familiar
with the use of linear algebra matrices to solve simultaneously equations, search
the internet for Solving Systems of Equations Using Linear Algebra and you will
find plenty of resources.

No matter how you choose to solve for the unknown values, any numeric
values which come out to be negative indicate that your initial hypothesis of
that vector’s sense was incorrect.

Three-dimensional Equilibrium Examples.
Example 5.5.1 3D Bent Bar.

The bent bar shown is held in a horizontal plane by a fixed connection at
C while cable AB exerts a 500 lb force on point A.
Given A = (4, 4, 5) B = (6, 0, 4) and C = (0, 4, 0).



CHAPTER 5. RIGID BODY EQUILIBRIUM 162

C

4 ft

4 ft
5 ft

4 ft
6 ft B

A

x

y

z

Find the reaction force C and concentrated moment M with components
Mx, My and Mz required to hold the bar in this position under this con-
dition,
Solution.

1. Draw a free-body diagram.
As always, begin by drawing a free-body diagram.

A

F

B

xz

y

2. Determine the force acting at point A in Cartesian form.
The force of the cable acts from A to B. This direction is described
by the displacement vector from A to B

rAB = (2i− 4j− 1k) ft
or the corresponding unit vector

λAB =
rAB

|rAB|
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=
2i− 4j− 1k√

(2)2 + (−4)2 + (−1)2

=
2i− 4j− 1k√

21
.

Multiplying the unit vector by the cable tension gives the force acting
on A as a three-dimensional Cartesian force vector

F = λABT

=

(
2i− 4j− 1k√

21

)
500 lb

= (2i− 4j− 1k)
(

500√
21

)
lb

F = (218i− 436j− 109k) lb.

3. Determine the moment about C.
The moment about point C is found with the cross product (4.5.1)
where the moment arm is the displacement vector from C to A.

rCA = (4i + 0j + 5k) ft

MC = rCA × F

=

∣∣∣∣∣∣
i j k
4 0 5

2 −4 −1

∣∣∣∣∣∣
(

500√
21

)

MC = (2182i + 1528 j− 1746k) ft·lb

4. Apply the equations of equilibrium.

ΣF = 0



ΣFx = 0 : Cx + Fx = 0

Cx = −218 lb
ΣTy = 0 : Cy − Fy = 0

Cy = +436 lb
ΣTz = 0 : Cz − Fz = 0

Cz = +109 lb
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ΣM = 0



ΣMx = 0 : Mx +MCx = 0

Mx = −2180 ft·lb
ΣMy = 0 : My +MCy = 0

My = −1530 ft·lb
ΣMz = 0 : Mz +MCz = 0

Mz = +1750 ft·lb

The resulting vector equations for the reaction force C and reaction
moment M are

C = (−218i + 436j + 109k) lb
M = (−2180i− 1530j + 1750k) ft·lb.

5.6 Stability and Determinacy

Key Questions

• What does stable mean for a rigid body?

• What does determinate mean for a rigid body?

• Does stability depend on the external loads or only on the reactions?

• How can I tell if a system is determinate?

• How can I decide if a problem is both stable and determinate, which
makes it solvable statics?

Determinate vs. Indeterminate. A static system is determinate if it is
possible to find the unknown reactions using the methods of statics, that is, by
using equilibrium equations, otherwise it is indeterminate.

In order for a system to be determinate the number of unknown force and
moment reaction components must be less than or equal to the number of inde-
pendent equations of equilibrium available. Each equilibrium equation derives
from a degree of freedom of the system, so there may be no more unknowns
than degrees of freedom. This means that we can determine no more than three
unknown reaction components in two-dimensional systems and no more than six
in three-dimensional systems.

An indeterminate system with fewer reaction components than degrees of
freedom is under-constrained and therefore unstable. On the other hand,
if there are more reaction components than degrees of freedom, the system is
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both over-constrained and indeterminate. In terms of force and moment
equations, there are more unknowns than equilibrium equations so they can’t all
be determined. This is not to say that it is impossible to find all reaction force
on an over-constrained system, just that you will not learn how to find them in
this course.

Stable vs. Unstable. A body in equilibrium is held in position by its sup-
ports, which restrict the body’s motion and counteract the applied loads. When
there are sufficient supports to restrain a body from moving, we say that the
body is stable. A stable body is prevented from translating and rotating in
all directions. A body which can move is unstable even if it is not currently
moving, because the slightest change in load may take it out of equilibrium and
initiate motion. Stability is loading independent i.e. a stable body is stable for
any loading condition.

Rules to Validate a Stable and Determinate System. There are three
rules to determine if a system is both stable and determinate. While, the rules
below can technically be checked in any order, they have been sorted from the
quickest to the most time consuming to speed up your analysis.

Rule 1: Are there exactly
three reaction components
on a two-dimensional body?
If YES, the system is deter-
minate.
If NO, the system is indeter-
minate or not stable.

Rule 2: Are all the reaction
force components parallel to
one another?
If YES, the system is unsta-
ble for translation.
If NO, the system is stable
for translation.
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Rule 3: Do the lines of ac-
tion of the reaction forces in-
tersect at a single point?
If YES, the system is unsta-
ble for rotation about the
single intersection point.
If NO, the system is stable
for rotation.

5.7 Equilibrium Examples
You can use these interactives to explore how the reactions supporting rigid
bodies are affected by the loads applied. You can use the equations of equilibrium
to solve for the unknown reactions, and check your work.

Standalone
Embed

Figure 5.7.1 Rigid body Equilibrium

Standalone
Embed

Figure 5.7.2 Cantilever beam

http://engineeringstatics.org/ggb_reactions-pin-roller_interactive.html
http://engineeringstatics.org/ggb_reactions-pin-roller_interactive-if.html
http://engineeringstatics.org/ggb_beam-cantilever_interactive.html
http://engineeringstatics.org/ggb_beam-cantilever_interactive-if.html
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Standalone
Embed

Figure 5.7.3 Beam with concentrated load

Standalone
Embed

Figure 5.7.4 Beam with concentrated force and couple moment

http://engineeringstatics.org/ggb_beam-simply-supported_interactive.html
http://engineeringstatics.org/ggb_beam-simply-supported_interactive-if.html
http://engineeringstatics.org/ggb_beam-simply-supported-w-couple_interactive.html
http://engineeringstatics.org/ggb_beam-simply-supported-w-couple_interactive-if.html
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5.8 Exercises (Ch. 5)

Standalone

http://engineeringstatics.org/numbas-chapter-5.html


Chapter 6

Equilibrium of Structures

In this chapter you will conduct static analysis of multi-body structures. Broadly
defined, a structure is any set of interconnected rigid bodies designed to serve a
purpose. The parts of the structure may move relative to one another, like the
blades of scissors, or they may be fixed relative to one another, like the structural
members of bridge.

Analysis of structures involves determining all forces acting on and between
individual members of the structure. Fundamentally there is nothing new here;
the techniques you have already learned apply, however structures tend to have
more unknown forces, and so are more involved and provide more opportunities
for error than the problems you have previously encountered. Correct free-body
diagrams and careful work are required, as always.

6.1 Structures
Structures fall into three broad categories: trusses, frames, and machines, and
you should be able to identify which is which.

A truss is a multi-body structure made up of long slender members con-
nected at their ends in triangular subunits. Truss members carry axial forces
only. Trusses are commonly used for spanning large distances without interrup-
tion: bridges, roof systems, stadiums, aircraft hangers, auditoriums for example.
They are also used for crane booms, radio towers and the like. Trusses are light-
weight and relatively strong. Over the years many unique truss designs have
been developed and are often named after the original designer.

A frame is a multi-part, rigid, stationary structure primarily designed to
support some type of load. A frame contains at least one multi-force member,
which a truss never has. This means that, unlike trusses, frame members must
support bending moments as well shear and normal forces. Many common items
can be considered frames. Some examples: building structure, bike frames, lad-
ders, scaffolding, and more.

A machine is very similar to a frame, except that it includes some moving
parts. The purpose of a machine is usually to provide a mechanical advantage

170
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and multiply forces. Pliers, scissors jacks, automobile suspensions, construction
equipment are all examples of machines.

Figure 6.1.1 Scissors and bridges are examples of engineering structures. Scis-
sors are a machine with three interconnected parts. The bridge is a truss.

Solving a structure means determining all forces acting on all of its parts.
The solution typically begins by determining the global equilibrium of the entire
structure, then breaking it into parts and analyzing each separate part. The
specific process will depend on the type of structure, but will always follow the
principles covered in the previous chapters.

Two-force Members. Many structures contain at least one two-force mem-
ber, and trusses consist of two-force members exclusively. Recall from Subsec-
tion 3.3.3 that a two-force body is an object subjected to exactly two forces.
Two-force members are not required to be slender or straight, but can be rec-
ognized because they connect to other bodies or supports at exactly two points,
and have no other loading unless it is also applied at those points.

Identifying two-force members is helpful when solving structures because
they automatically establish the line of action of the two forces. In order for
a two-force body to be in equilibrium, the forces acting on it must be equal
in magnitude, opposite in direction, and have a line-of-action passing through
the point where the two forces are applied. Since these points are known, the
direction of the line-of-action is readily found.

The common way to express the force of a two-force member is with a mag-
nitude and a sense, where the sense is either tension or compression. If the two
forces tend to stretch the object we say it is in tension; if they act the other way
and squash the object, it is in compression. The usual approach is to assume that
a two-force member is in tension, then draw the free-body diagram and write
the equilibrium equations accordingly. If the analysis shows that the forces are
negative then they actually act with the opposite sense, i.e. compression.

Figure 6.1.2 Two-force members in tension and compression.
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6.2 Interactions between members
When analyzing structures we are dealing with multi-body systems, and need
to recall Newton’s 3rd Law, “For every action, there is an equal and opposite
reaction.”

This law applies to multi-body systems wherever one body connects to an-
other. At any interaction point, forces are transferred from one body to the
interacting body as equal and opposite action-reaction pairs. These forces can-
cel out and are invisible when the structure is intact. Only when we cut through
a member or joint in the isolation step of creating a free-body diagram, do we
expose the interaction forces. When drawing free-body diagrams of the compo-
nents of structures, it is critically important to represent these action-reaction
pairs consistently. You may assume either direction for one, but the other must
be equal and opposite.

For example, look at the members and joints in the truss below. Diagram
(a) shows the truss members held together by pins at A, B, and C. The forces
holding the parts together cancel and are not shown. In the ‘exploded’ view (b),
the parts have been separated and the action-reaction pairs are exposed. Member
AB is in tension, and the forces acting on it, also called AB, oppose each other
and tend to stretch the member. These stretching forces are accompanied by
equal and opposite forces, also called AB acting on pins A and B. Tensile forces
BC and compressive forces CA behave similarly.

A

B C

AB

θ

BC

CA

(a) Whole Truss

A

B C

AB

AB

BC BC

CA

CA

θ

(b) Exploded

Figure 6.2.1 External load and global reactions in red. Internal action-reaction
pairs in blue.

Thinking Deeper 6.2.2 Multi-body systems.

When a multipart structure is in equilibrium, each part of the structure is
also in equilibrium. For example in the truss below, each member of the
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truss, each joint, and each portion of the truss is also in equilibrium. This
continues all the way down to the atoms of the structure. This universal
equilibrium across spatial scales is one of the governing principles which
allows us to break multi-body systems into smaller solvable parts.

A B C

D
F

(a) Complete Truss

A

D

AB

CD
BD

F

(b) Member AD

A

B

C

C

AD

AD

BC

CD

CD
BD

F

(c) Truss joints

A
B

AB

AD

BD

(d) Section

Figure 6.2.3 Possible free-body diagrams
You will see in this chapter that we have the freedom to isolate free-body
diagrams at any scale to expose our target unknowns.

6.2.1 Load Paths
Load paths can help you think about structural systems. Load paths show how
applied forces like the floor load in the image below pass through the intercon-
nected members of the structure until they end up at the fixed support reac-
tions. All structural systems, whether non-moving frames or moving machines
have some sort of load path. When analyzing all structures, you computation-
ally move from known values through the interconnected bodies of the system,
following the load path, solving for unknowns as you go.
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Slab

Floor Load

Footings
Columns

Figure 6.2.4 Load paths

6.3 Trusses

Key Questions

• What are simple trusses and how do they differ from other structural
systems?

• What are the benefits and dangers of simple trusses?

• How can we determine the forces acting within simple truss systems?

• For a truss in equilibrium, why is every individual member, joint,
and section cut from the truss also in equilibrium?

• How do we identify zero-force members in a truss and use their
presence to simplify the analysis?

6.3.1 Introduction
A truss is a rigid engineering structure made up of long, slender members con-
nected at their ends. Trusses are commonly used to span large distances with a
strong, lightweight structure. Some familiar applications of trusses are bridges,
roof structures, and pylons. Planar trusses are two-dimension trusses built
out of triangular subunits, while space trusses are three-dimensional, and the
basic unit is a tetrahedron.
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In this section we will analyze a simplified approximation of a planar truss,
called a simple truss and determine the forces the members individually sup-
port when the truss supports a load. Two different approaches will be presented:
the method of sections, and the method of joints.

6.3.2 Simple Trusses
Truss members are connected to each other rigidly, by welding or joining the
ends with a gusset plate. This makes the connecting joints rigid, but also make
the truss difficult to analyze. To reduce the mathematical complexity in this text
we will only consider simple trusses, which are a simplification appropriate for
preliminary analysis.

Figure 6.3.1 Truss with riveted gusset plates.
Simple trusses are made of all two-force members and all joints are modeled as

frictionless pins. All applied and reaction forces are applied only to these joints.
Simple trusses, by their nature, are statically determinate, having a sufficient
number of equations to solve for all unknowns values. While the members of
real-life trusses stretch and compress under load, we will continue to assume that
all bodies we encounter are rigid.

Simple trusses are made of triangles, which makes them rigid when removed
from supports. Simple trusses are determinate, having a balance of equations
and unknowns, following the equation:

2× (number of joints)︸ ︷︷ ︸
system equations

= (number of reaction forces) + (number of members)︸ ︷︷ ︸
system unknowns

Commonly, rigid trusses have only three reaction forces, resulting in the
equation:

2× (number of joints) = 3 + (number of members)
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Unstable trusses lack the structural members to maintain their rigidity when
removed from their supports. They can also be recognized using the equation
above having more system equations on the left side of the equation above then
system unknowns on the right.

Truss systems with redundant members have fewer system equations on the
left side of the equation above than the system unknowns on the right. While
they are indeterminate in statics, in later courses you will learn to solve these
trusses too, by taking into account the deformations of the truss members.

Thinking Deeper 6.3.2 The Danger of Simple Trusses.

Simple trusses have no structural redundancy, which makes them easy to
solve using the techniques of this chapter, however this simplicity also has
a dark side.

These trusses are sometimes called fracture critical trusses because the
failure of a single component can lead to catastrophic failure of the en-
tire structure. With no redundancy, there is no alternative load path for
the forces that normally would be supported by that member. You can
visualize the fracture critical nature of simple trusses by thinking about
a triangle with pinned corners. If one side of a triangle fails, the other
two sides lose their support and will collapse. In a full truss made of only
triangles, the collapse of one triangle starts a chain reaction which causes
others to collapse as well.
While fracture critical bridges are being replaced by more robust designs,
there are still thousands in service across the United States. To read more
about two specific fracture critical collapses search the internet for the
Silver Bridge collapse, or the I-5 Skagit River Bridge collapse.
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6.3.3 Solving Trusses
“Solving” a truss means identifying and determining the unknown forces carried
by the members of the truss when supporting the assumed load. Because trusses
contains only two-force members, these internal forces are all purely axial. Inter-
nal forces in frames and machines will additionally include traverse forces and
bending moments, as you will see in Chapter ??.

Determining the internal forces is only the first step of a thorough analysis of
a truss structure. Later steps would include refining the initial analysis by consid-
ering other load conditions, accounting for the weight of the members, relaxing
the requirement that the members be connected with frictionless pins, and ulti-
mately determining the stresses in the structural members and the dimensions
required in order to prevent failure.

Two strategies to solve trusses will be covered in the following sections: the
Method of Joints and the Method of Sections. Either method may be used, but
the Method of Joints is usually easier when finding the forces in all the members,
while the Method of Sections is a more efficient way to solve for specific members
without solving the entire truss. It’s also possible to mix and match methods.

The initial steps to solve a truss are the same for both methods. First, ensure
that the structure can be modeled as a simple truss, then draw and label a sketch
of the entire truss. Each joint should be labeled with a letter, and the members
will be identified by their endpoints, so member AB is the member between
joints A and B. This will help you keep everything organized and consistent
in later analysis. Then, treat the entire truss as a rigid body and solve for the
external reactions using the methods of Chapter 5. If the truss is cantilevered
and unsupported at one end you may not actually need the reaction forces and
may skip this step. The reaction forces can be used later to check your work.

A

B

C

D

AB BC

AD
DCD

B

Figure 6.3.3 Truss Labels.

A B
C

D

Figure 6.3.4 Free body diagram.

6.3.4 Zero-Force Members
Sometimes a truss will contain one or more zero-force members. As the name
implies, zero-force members carry no force and thus support no load. Zero-force
members will be found when you apply equilibrium equations to the joints, but
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you can save some work if you can spot and eliminate them before you begin.
Fortunately, zero-force members can easily be identified by inspection with two
rules.

• Rule 1: If two non-collinear members meet at an unloaded joint, then both
are zero-force members.

• Rule 2: If three forces (interaction, reaction, or applied forces) meet at a
joint and two are collinear, then the third is a zero-force member.

A

B

C

D

E

Consider the truss to the left. Assume
that the dimensions, angles and the mag-
nitude of force C are given. At joint B,
there are two vertical collinear members
as well as a third member which is hori-
zontal, so Rule 2 should apply.
What does Rule 2 say about member
BD? Can it tell us anything about mem-
ber DA?

Cutting the members at the dotted boundary line exposes
internal forces BC, BD and BA. These forces act along the
axis of the corresponding members by the nature of two-force
members, and for convenience have been assumed in tension
although that may turn out to be incorrect.
Rule 2 applies here since BA and BC are collinear and BD
is not.

B

BC

BD

BA

The free-body diagram of joint B may be drawn by eliminat-
ing the cut members and only showing the forces themselves.
The situation is simple enough to apply the equilibrium equa-
tions in your head.

B

BC

BD

BA

Vertically, forces BC and BA must be equal, and horizontally, force BD
must be zero to satisfy ΣFx = 0. We learn that member BD is a zero-force
member.

While it is probably easiest to think about Rule 2 when the third member
is perpendicular to the collinear pair, it doesn’t have to be. Any perpendicular
component must be zero which implies that the corresponding member is zero-
force.
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Finding zero-force members is an iterative process. If you
determine that a member is zero-force, eliminate it and you
may find others. Continuing the analysis at joint D draw
its free-body diagram. Keep in mind that if one end of a
member is zero-force the whole member is zero-force. Since
member BD is zero-force, horizontal force BD acting on
joint D is zero and need not be included on the free-body di-
agram, and the remaining three forces match the conditions
to apply Rule 2.

D

x

y
DC

BD

DA DE

Analyzing the joint as before, but with a coordinate system aligned with the
collinear pair,

ΣFy = 0

DA sin θ = 0

This equation will be satisfied if DA = 0 or if sin θ = 0 but the second
condition is only true when θ = 0◦ or θ = 180◦, which is not the case here.
Therefore, force DA must be zero, and we can conclude that member DA is a
zero-force member as well.
Finally consider joint C and draw its free-body diagram.
Does either Rule apply to this joint? No. You will need
to solve two equilibrium equations with this free-body dia-
gram to find the magnitudes of forces CD and CB.
On the other hand, if the horizontal load C was not present
or if either BC or DC was zero-force, then Rule 1 would
apply and the remaining members would also be zero-force.

C

BC
DC

A

B

C

D

E

The final truss after eliminating the
zero-force members is shown to the left.
Forces BC = BA and DC = DE
and the members may be replaced with
longer members AC and CE.
The original truss has been reduced to
a simpler triangular structure with only
three internal forces to be found. Once
you are able to spot zero force members,
this simplification can be made without
drawing any diagrams or performing any
calculations.

Thinking Deeper 6.3.5 Why include Zero-Force Members?

You may be wondering what is the point of including a member in a truss
if it supports no load. In our simplified example problems, they really are



CHAPTER 6. EQUILIBRIUM OF STRUCTURES 180

unnecessary, but in the real world, zero-force members are important for
several reasons:

• We have assumed that all members have negligible weight or if not,
applied half the weight to each pin. The actual weight of real mem-
bers invalidates the two-force body assumption and leads to errors.
Consider a vertical member -- the internal forces must at least sup-
port the member’s weight.

• Truss members are not actually rigid, and long slender members
under compression will buckle and collapse. The so-called zero-force
member will be engaged to prevent this buckling. In the previous
example, members CD and DE are under compression and form an
unstable equilibrium and would definitely buckle at pin D if they
were not replaced with a single member CE with sufficient rigidity.

• Trusses are often used over a wide array of loading conditions. While
a member may be zero-force for one loading condition, it will likely
be engaged under a different condition — think about how the load
on a bridge shifts as a heavy truck drives across.

So finding a zero-force member in a determinate truss does not mean
you can discard the member. Zero-force members can be thought of as
removed from the analysis, but only for the loading you are currently ana-
lyzing. After removing zero-force members, you are left with the simplest
truss which connects the reaction and applied forces with triangles. If you
misinterpret the rules you may over-eliminate members and be left with
missing legs of triangles or ‘floating’ forces that have no load path to the
foundation.

Example 6.3.6 Zero-Force Member Example.

Given the truss shown, elim-
inate all the zero-force mem-
bers, and draw the remaining
truss.

Solution. Rule 1:
• Due to two members meeting at unloaded joint G, both members
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GH and FG are zero-force members

• Due to two members meeting at unloaded joint D, both members
DE and CD are zero-force members

Rule 2:

• Due to three forces meeting at joining B, with two being collinear
(internal forces in AB and BC) then BF is a zero-force member.

• Due to three forces meeting at joint I, with two being collinear
(internal forces in IF and CI), then EI is a zero-force member. Note
that member EI does not need to be perpendicular to the collinear
members to be a zero force.

• After removing zero-force members EI and DE, three forces reamain
at E, with two being collinear (internal force in EF and external load
FE), making EC a zero-force member.

The remaining truss is shown.
Note that once EI and BF
are eliminated, you can effec-
tively eliminate the joints B
and I as the member forces
in the collinear members will
be equal. Also notice that the
truss is still formed of trian-
gles which fully support all of
the applied forces.

Try to find all the zero-force members in the truss in the interactive diagram
below, once you believe you have found all of them, check out the step-by-step
solution in the interactive.

Standalone
Embed

Figure 6.3.7 Identify zero-force members.

http://engineeringstatics.org/ggb_zero-force-members_interactive.html
http://engineeringstatics.org/ggb_zero-force-members_interactive-if.html
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6.4 Method of Joints

Key Questions

• What are the important components to include on a free-body dia-
gram of a joint in a truss?

• How are the solutions found at one joint used to create an accurate
free-body diagram of another joint?

• How do we ensure that tension or compression in a member is prop-
erly represented?

The method of joints is a process used to solve for the unknown forces
acting on members of a truss. The method centers on the joints or connection
points between the members, and it is most useful when you need to solve for
all the unknown forces in a truss structure.

The joints are treated as particles subjected to force by the connected mem-
bers and any applied loads. As the joints are in equilibrium and the forces are
concurrent, ΣF = 0 can be applied, but the ΣM = 0 equation provides no
information.

For planar trusses, each joint yields two scalar equations, ΣFx = 0 and
ΣFy = 0, and so two unknowns can be found. Therefore, a joint can be solved
when there are one or two unknowns forces and at least one known force acting
on it.

Forces are transferred from joint to joint by the connecting members, so when
unknown forces on a joint are found, the corresponding forces on adjacent joints
are also found.

6.4.1 Procedure
The procedure is straightforward application of rigid body and particle equilib-
rium

1. Determine if the structure is a truss and if it is determinate. See Subsec-
tion 6.3.2

2. Identify and remove all zero-force members. This is not required, but will
eliminate unnecessary computations. See Subsection 6.3.4.

3. Determine if you need to find the external reactions. If you can identify
a solvable joint immediately, then you do not need to find the external
reactions.
A solvable joint includes one or more known forces and no more than two
unknown forces. If there are no joints that satisfy this condition then you
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will need to find the external reactions before proceeding, using a free-body
diagram of the entire truss.

4. Identify a solvable joint and solve it using the methods of Chapter 3. When
drawing free-body diagrams of joints you should

• Represent the joint as a dot.
• Draw all known forces in their known directions with arrowheads

indicating their sense. Known forces are the given loads, and forces
determined from previously solved joints.

• Assume the sense of unknown forces. A common practice is to assume
that all unknown forces are in tension, i.e. pulling away from the free-
body diagram of the pin, and label them based on the member they
represent.

Finally, write out and solve the force equilibrium equations for the joint. If
you assumed that all forces were tensile earlier, negative answers indicate
compression.

5. Once the unknown forces acting on a joint are determined, carry these
values to the adjacent joints and repeat step four until all the joints have
been solved. Take care when transferring forces to adjoining joints to
maintain their sense — either tension or compression.

6. If you solved for the reactions in step two, you will have more equations
available than unknown forces when you reach the last joint. The extra
equations can be used to check your work.

Rather than solving the joints sequentially, you could write out the equations
for all the joints first and solve them simultaneously using a matrix solution, but
only if you have a computer available as large matrices are not typically solvable
with a calculator.

The interactive below shows a triangular truss supported by a pin at A and
a roller at B, and loaded at joint C. You can see how the reactions and internal
forces adjust as you vary the load at C. You can solve it by starting at joint C
and solving for BC and CD, then moving to joint B and solving for AB Joint
A can be used to check your work.

Standalone
Embed

Figure 6.4.1 Internal and external forces of a simple truss.

http://engineeringstatics.org/ggb_method-of-joints_interactive.html
http://engineeringstatics.org/ggb_method-of-joints_interactive-if.html
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6.5 Method of Sections

Key Questions

• How do we determine an appropriate section to cut through a truss?

• How are equilibrium equations applied to a section?

The method of sections is used to solve for the unknown forces within
specific members of a truss without solving for them all. The method involves
dividing the truss into sections by cutting through the selected members and
analyzing the section as a rigid body. The advantage of the Method of Sections
is that the only internal member forces exposed are those which you have cut
through, the remaining internal forces are not exposed and thus ignored.

6.5.1 Procedure
The procedure to solve for unknown forces using the method of sections is

1. Determine if a truss can be modeled as a simple truss.

2. Identify and eliminate all zero-force members. Removing zero-force mem-
bers is not required but may eliminate unnecessary computations.

3. Solve for the external reactions, if necessary. Reactions will be necessary
if the reaction forces act on the section of the truss you choose to solve
below.

4. Use your imaginary chain saw to cut the truss into two pieces by cutting
through some or all of the members you are interested in. The cut does
not need to be a straight line.
Every cut member exposes an unknown internal force, so if you cut three
members you’ll expose three unknowns. Exposing more than three mem-
bers is not advised because you create more unknowns than available equi-
librium equations.

5. Select the easier of the two halves of the truss and draw its free-body
diagram.

• Include all applied and reaction forces acting on the section, and show
known forces acting in their known directions.

• Draw unknown forces in assumed directions and label them. A com-
mon practice is to assume that all unknown forces are in tension and
label them based on the endpoints of the member they represent.
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6. Write out and solve the equilibrium equations for your chosen section. If
you assumed that unknown forces were tensile, negative answers indicate
compression.

7. If you have not found all the required forces with one section cut, repeat
the process using another imaginary cut or proceed with the method of
joints if it is more convenient.

The interactive below demonstrates the method of sections. The internal
forces in the truss members are exposed by cutting through the truss at three
locations. The known loads are shown in red, and the unknown reactions Fx,
Ax and Ay, and unknown member forces are shown in blue. All members are
assumed to be in tension. In this situation, it is not necessary to find the
reactions if the section to the right of the cut is selected.

Standalone
Embed

Figure 6.5.1 Method of sections demonstration.

6.6 Frames and Machines

Key Questions

• How are frames and machines different from trusses?

• Why can the method of joints and method of sections not be used
for frames and machines?

• How do we identify if a structure is independently rigid?

• How do we apply equilibrium equations to each member of the struc-
ture, and ensure that the sense of a force appearing on multiple
free-body diagrams is consistent?

Frame and machines are engineering structures that contain at least one
multi-force member. As their name implies, multi-force members have more
than two concentrated loads, distributed loads, and/or couples applied to them
and therefore are not two-force members. Note that all bodies we investigated
in Chapter 5 were all multi-force bodies.

http://engineeringstatics.org/ggb_method-of-sections_interactive.html
http://engineeringstatics.org/ggb_method-of-sections_interactive-if.html
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Frames are rigid, stationary structures designed to support loads and must
include at least one multi-force member.

Machines are non-rigid structures where the parts can move relative to one
another. Generally they have an input and an output force and are designed
produce a mechanical advantage. Note that all machines in this text are in static
equilibrium by their interacting and applied forces.

Though there is a design difference between frames and machines they are
grouped together because they can both be analyzed using the same process,
which is the subject of this section.

Figure 6.6.1 Frames are rigid ob-
jects containing multi-force mem-
bers.

Figure 6.6.2 Machines contain
multi-force members that can move
relative to one another.

6.6.1 Analyzing Frames and Machines
Analyzing a frame or machine means determining all applied, reaction, and in-
ternal forces and couples acting on the structure and all of its parts.

Multi-part structures are analyzed by mentally taking them apart and ana-
lyzing the entire structure and each part separately. Each component is analyzed
as an separate rigid body using the techniques we have already seen.

Although we can separate the structure into parts, the parts are not indepen-
dent since, by Newton’s Third Law, every interaction is half of a complementary
pair. For every force or moment of body A on B there is an equal-and-opposite
force or moment of body B on body A and the free-body diagrams must reflect
this. Incorrect representation of these interacting pairs on free-body diagrams
is a common source of student errors.

Once the frame or machine is disassembled and free-body diagrams have
been drawn, the structure is analyzed by applying equations of equilibrium to
free-body diagrams, exactly as you have done before —there’s nothing new here.

The difficulty arises first in selecting objects and drawing correct free-body
diagrams and second, in identifying an efficient solution strategy since you usu-
ally won’t be able to completely solve a diagram without first finding the value
of an unknown force from another diagram.
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In Chapter 5 we saw that each two-dimensional free-body diagram results
in up to three linearly independent equations. By disassembling the structure
we now have more free-body diagrams available, and can use them to find more
unknown values. Here’s a few more details on the number of equations that
come from each type of two-dimensional free-body diagram:

• Two-force members.
One equation. Two-force members can be recognized as either a cable or a
weightless link with all forces coming from two frictionless pins. The force
at one pin is equal and opposite to the force on the other placing the body
in tension or compression.

• Objects with concurrent forces and no couple-moments.
Two equations. These are the problems you solved in Chapter 3. There
are two equations available ΣFx = 0 and ΣFy = 0.

• Multi-force rigid body with non-concurrent forces and/or couples.
Three equations. These are the most general body types. Use ΣFx = 0,
ΣFy = 0, andΣM = 0 to solve for three unknowns.

Procedure

The process used to analyze frames and machines is outlined below
1. Determine if the entire structure is independently rigid. An independently

rigid structure will hold it shape even when separated from its supports.
Look for triangles formed among the members, as triangles are inherently
rigid. If it is not independently rigid, the structure will collapse when the
supports are removed.
If the structure is not independently rigid, skip to the next step. Otherwise,
model it as a single rigid body and determine the external reaction forces.

2. Draw a free-body diagram for each of the members in the structure. You
must represent all forces acting on each member, including:

• Applied forces and couples and the weights of the components if non-
negligible.

• Interaction forces due to two-force members. There will be force of
unknown magnitude but the known direction at points connected to
two-force members. The forces will act along the line between the
two connection points.

• All reaction forces and moments at the connection points between
members. Forces with an unknown magnitude and direction are usu-
ally represented by unknown x and y components, but can also be
represented as a force with unknown magnitude acting in an unknown
direction.
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All interaction forces and moments between connected bodies must be
shown as equal-and-opposite action-reaction pairs.

A

B

C

D

E

F

Figure 6.6.3 Free-body dia-
gram of a rigid frame with pin
at A, roller at E, and load at
F .

F

Figure 6.6.4 Free body diagrams of
the individual components. External
forces are red, exposed action-reaction
pairs in blue.

3. Write out the equilibrium equations for each free-body diagram.

4. Solve the equilibrium equations for the unknowns. You can do this alge-
braically, solving for one variable at a time, or you can use matrix equations
to solve for everything at once. Negative magnitudes indicate that the as-
sumed direction of that term was incorrect, and the actual force/moment
is opposite the assumed direction.

In the following example, we’ll discuss how to select objects, distinguish
external and internal loads, draw consistent and correct free-body diagrams,
and identify a good solution strategy.

Free-body diagram of structures

Drawing free-body diagrams of complex frames and machines can be tricky. In
this section we will walk through the process of selecting appropriate objects and
drawing consistent and correct free-body diagrams in order to solve a typical
machine problem.

The toggle clamp shown in Figure 6.6.5 is used to quickly secure wooden
furniture parts to the bedplate of a CNC router in order to cut mortise and
tenon joints. The component parts are shown and named in Figure 6.6.6.
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Figure 6.6.5 Original
diagram
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Figure 6.6.6 Component
parts.

This original diagram is not a free-body diagram because all the forces neces-
sary to hold the objects in equilibrium are not indicated. The only force shown is
F, which is supplied by some external agent, presumably the machine operator.
We must assume that the wall and floor are still attached to the world and held
fixed.

To perform an equilibrium analysis, we need to develop one or more free-body
diagrams and apply the equations of equilibrium to them. Free-body diagrams
can be drawn for the entire structure, each individual part, and for any combi-
nation of connected parts. Not all these diagrams will be needed however, and
part of the challenge of solving these problems is selecting and drawing only the
ones you need. In any event, a clear decision must always be made about what
is part of the free-body and what is not.

When we separate one body from another loads will appear on both bod-
ies which act to constrain them as they were constrained before the separation.
These forces and moments must be represented on the free-body diagrams con-
sistently as halves of equal-and-opposite action-reaction pairs.

For this discussion we will progressively exclude parts from the original struc-
ture and draw the free-body diagram of what remains. In so doing we will clarify
the difference between internal and external forces, recognize and take advan-
tage of two-force bodies, and provide some tips for drawing correct free-body
diagrams. In an actual situation you will not need to draw all these diagrams,
instead you should think through the situation and draw only the diagrams you
will need for a solution.

It is helpful to consider which loads are known and which are unknown as you
prepare free-body diagrams. In planar problems a free-body diagram with three
or fewer unknowns may be solved immediately. When there are more than three
unknowns, you must incorporate information from other diagrams to complete
the solution.

Exclude the floor. To begin, we can remove the floor from the system. Every-
thing except the floor is now included as our body; only the floor is excluded.
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The floor was in contact with the other objects at the ground and also at the
connection between the floor and the wall.

Since we don’t know how the wall and the floor are connected we will assume
they were fixed together. We also have to model how the wall is attached to the
rest of the world. The fixed support from wall-to-world and wall-to-floor can be
combined to be a single set of three loads which we represent as horizontal and
vertical forces Vx and Vy, and a concentrated moment Mv.

24"

24"

40"

7" 9"

θ

F

Α

Β

C
D

Included Excluded
Lever ABC,
Short Link BD,
Wooden Block,
Roller D, Wall,
Bearing A

Floor

Figure 6.6.7 Free-body Diagram 1
The effect of the floor on the block is represented by a single vertical force G

which holds the block the same way the floor was previously supporting it; the
loads you add must constrain your object the same way they were constrained
in the real world. This representation is really a simplification of the actual
situation since the force of the floor is really distributed over the bottom surface
of the block; however, this simplification is justified in much the same way as we
represent the weight of an object as a single force acting at its center of gravity.

Tips.

• Include friction if it’s given or obvious.

• Internal forces in rigid bodies should be modeled as a fixed support.

• If you need info which you don’t have, select a variable to act as its
name.

Exclude the wall. If you next remove the wall, forces G and F remain from
before, but we now expose four loads from where the wall was connected to what
is now our body; a normal force N at the roller and three loads from the fixed
support between the bearing block and the wall Wx, Wy, and M .
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N

θ

F

Α

Β

C
D

Included Excluded
Lever ABC, Short
Link BD, Wooden
Block, Roller D,
Bearing A

Floor, Wall

Figure 6.6.8 Free-body diagram 2
Note that the reactions between the wall and the floor are no longer included

in the free-body diagram because they are both on the same side of the included-
excluded table. Only loads that cross from included to excluded produce a load
on the free-body diagram.

Tips.

• Every force needs a point of application and a clear arrowhead.

• Indicate any distances and angles needed and not available on the
original diagram.

• Define the direction of forces which are not vertical or horizontal
with an angle from a reference direction.

• Define a coordinate system unless you are using the standard x-y
axes.

• Do not add forces that don’t act on your body.

Exclude the bearing at A. We are not interested in the loads between the
bearing block and the wall Wx, Wy, and M and further, the free-body diagram
still includes too many unknowns to solve.

After removing the bearing we reduce the unknowns at A to two because the
bearing block and the lever are connected with a pin while the bearing block
and wall were connected with a fixed support. The loads Wx, Wy, and M and
Vx, Vy, and Mv are not included on this free-body diagram because they don’t
act on this object.



CHAPTER 6. EQUILIBRIUM OF STRUCTURES 192

N

θ

F
Β

C
D

Α

Included Excluded
Lever ABC, Short
Link BD, Wooden
Block, Roller D,

Floor, Wall, Bearing A

Figure 6.6.9 Free-body diagram 3
The load from the short link at B is does not appear on this free-body

diagram because it is internal. Internal loads connect two parts of the body
together. They should not be included in the free-body diagram because they
always occur in equal and opposite pairs which cancel each other out.

Tips.

• Look for free-body diagrams which include only three unknowns in
two dimensions or six unknowns in three.

• Don’t include internal loads on your free-body diagrams.

Examine the wooden block.

W

Q

G

A free-body diagram of the block shows the clamping force Q,
which we are seeking.
Note that Q ̸= G. These forces are given different names since
they may have different magnitudes. If the weight of the block is
small1 in comparison to the other forces acting on the object it
may be neglected, in which case Q = G and they could be given
the same name.

Figure 6.6.10 Free-body diagram 4 (block)

Tips.

• If the two forces are not the same don’t identify them by the same
name.

• Make as few assumptions as you possibly can. Make a note of any
assumptions you make.

• In textbook problems, if the weight of an object is not mentioned it

1(less than about 0.1%)
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may be neglected.

Exclude the wooden block. We can further simplify the diagram by remov-
ing the wooden block, leaving only the roller, short link and lever.

θ

F
Β

C
D

Q

N

Α

Included Excluded
Lever ABC, Short
Link BD, Roller
D

Floor, Wall, Bearing A, Wooden
Block

Figure 6.6.11 Free-body diagram 5 (lever and link)

Examine the short link BD. The short link BD is a two-force body and as
discussed in Subsection 3.3.3 can only be in equilibrium if the forces at B and
D are equal-and-opposite and act along a line passing through these two points.
This means that the 24:7 slope of the link determines the direction of force BD.

Β

D
7

24

When drawing free-body diagrams, forces with known directions
should be drawn pointing in that direction rather than breaking
them into components, otherwise you may lose track of the fact
that the x and y components are not independent but are actu-
ally related by the direction of the force.

Figure 6.6.12 Free-body diagram 6 (short link)
Here we have assumed that the forces acting on the link are compressive. If

the equilibrium equations produce a positive value for BD our assumption is
proved correct, while a negative result indicates that we were wrong and the link
is actually in tension.

Tips.

• A short-link is a two-force body.
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• Recognize two-force bodies because they give you information about
direction.

• Represent the force of a two-force bodies as a force with unknown
magnitude acting along a known line of action, not as x and y com-
ponents.

• If you don’t know the sense of a force along its line of action, assume
one. If you guess wrong, the analysis will give you a negative value.

Examine the roller at D.

Q

Note that the force BD acting on the roller is shown pointing
down and to the left. This is the opposite to the force acting on
the link at D, which acts up and to the right. These two must
act in opposite directions because they are an action-reaction
pair.

Figure 6.6.13 Free-body diagram 7 (roller)
The roller is a three-force body, so the lines of action of N , Q, and BD are

coincident and it may be treated as a particle. Equilibrium analysis shows that
N and Q must oppose the horizontal and vertical components of force BD.

The clamping force Q produced by the toggle clamp appears on this free-body
diagram so it will be important later for the solution.

Tips.

• Recognize three-force bodies and use their special properties to your
advantage.

• Use the same name for the exposed forces on interacting bodies since
they are equal-and-opposite halves of an action-reaction pair.

Exclude the roller. We can further simplify the free-body diagram by re-
moving the roller. The roller and short link are connected with a pin but, for
equilibrium, the forces acting on a short link (or any two-force body) must share
the same line of action — the line connecting its endpoints; otherwise, compo-
nents perpendicular to this line would produce an unbalanced moment about
the other endpoint.
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θ

F
Β

C

D

24

7

Α

BD

Included Excluded
Lever ABC, Short
Link BD

Floor, Wall, Bearing A, Wooden
Block, Roller D

Figure 6.6.14 Free-body diagram 8

Exclude the short link. The previous free-body diagram has three unknowns
and can be solved but the free-body diagram of the lever by itself is also correct,
and this is the free-body diagram that most people begin with.

θ

FΒ

C

24
7

Α

BD

Included Excluded
Lever ABC Floor, Wall, Bearing A, Wooden

Block, Roller D, Short Link BD

Figure 6.6.15 Free-body diagram 9 (lever)
The load BD acting on the lever in this diagram has the same magnitude,

direction, and line of action as the load acting on the short link at D, so this
can be thought of as sliding a force along its line of action — an equivalent
transformation.

The following loads are not shown here because they act between two objects
which are not part of the body:

• the loads between the bearing block and the wall Wx, Wy, and M ,

• the loads between the floor and the wall Vx, Vy, and Mv,

• the load between the block and the floor G, and

• the load between the roller and the wall N .

All of the free-body diagrams we have drawn are correct, though not all
are necessary. Generally we only draw the free-body diagrams needed for the
solution. These diagrams form a chain which connect the known input forces to
the desired output forces. When solving frames and machines, think carefully
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about what you know and what you need to solve for: that determines which free-
body diagrams you will need. Taking a few moments to consider what unknowns
you’d have at each step can help you optimize your problem-solving effort.

You should recognize that it is possible to draw incorrect free-body diagrams
which produce correct results. Consider the diagram below.

θ

F
Β

C

D

Q

N

Α

This diagram doesn’t accurately represent what is happen-
ing at pin D.

Figure 6.6.16 Free-body diagram 10 (Subtly incorrect)
Forces N and Q do not actually act on the short link at D. Force N acts

between the roller and the wall and clearly this diagram doesn’t include the roller.
Similarly Q acts between the block and the roller. These forces don’t belong on
the free-body diagram even though they are equal to the x and y components of
force BD. Only forces which cross the imaginary boundary between the object
and the rest of the world belong on the free-body diagram.

Students are inclined argue that this free-body diagram is statically equiv-
alent to Figure 6.6.11 and it produces the correct answer so it must be OK. It
isn’t correct because it reflects a misunderstanding about what you are modeling
and what you aren’t. Other engineers using your FBDs need to know what you
are modeling. The FBD is the key to your analysis of the real world.

Example 6.6.17 Toggle Clamp.

Knowing that angle θ = 60°, find the vertical clamping force acting on the
piece at D and the magnitude of the force exerted on member ABC at
pin B in terms of force F applied to the clamp arm at C.
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24"

24"

40"

7" 9"

θ

F

Α

Β

C
D

Solution. For this problem, we need two free-body diagrams. The first
links the input force F to the link force BD, and the second links BD to
the clamping force Q.

θ

FΒ

C

24
7

Α

BD

(a) FBD I

Q

N

BD

(b) FBD II
Figure 6.6.18
We will assume the two-force member BD is in compression based on
the physical situation. The forces acting on the link, lever and roller are
all directed along a line-of-action defined by a 7-24-25 triangle. Similar
triangles gives

BDx =

(
7

25

)
BD

BDy =

(
24

25

)
BD.

Applying
∑

M = 0 at A to the free-body diagram of the lever gives BD
in terms of F .

FBD I: ΣMA = 0

BDx(24) + BDy(7)− Fx(40)− Fy(16) = 0(
7

25
BD

)
(24) +

(
24

25
BD

)
(7) = (F cos 60◦)(40) + (F sin 60◦)(16)
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13.44BD = 33.86F

BD = 2.52F

The positive sign on the answer reveals that our assumption that member
BD was in compression was correct.
Applying

∑
Fy = 0 to the free-body diagram of the roller will give Q in

terms of F .

FBD II: ΣFy = 0

Q− BDy = 0

Q =
24

25
BD

=
24

25
(2.52F )

= 2.42F

While you could certainly find Ax, Ay and N using other equilibrium
equations they weren’t asked for and we don’t bother to find them.

Thinking Deeper 6.6.19 Why does the Method of Joints work on trusses
but not on Frames or Machines?

We can solve trusses using the methods of joints and method of sections
because all members of a simple truss are two-force bodies. Cutting a truss
member exposes an internal force which has an unknown scalar magnitude,
but a known line of action. The force acts along the axis of the member,
and causes no bending if the member is straight. Cutting a truss member
exposes one unknown.
Frames and machines are made of multi-force members and cutting these,
in general, exposes:

• A force with an unknown magnitude acting in an unknown direction,
and

• A bending moment at the plane of the cut.

Cutting a two-dimensional multi-force member exposes three unknowns,
and six are exposed for a three-dimensional body. The number of un-
knowns quickly eclipses the available equations rendering the problem im-
possible to solve.
Bottom line: use method of sections and joints only for trusses made of
two-force straight members; for all other multi-force rigid body systems
draw and analyze free-body diagrams of the components.
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6.7 Summary
The various equilibrium topics we have covered and the associated problem solv-
ing techniques are summarized below.

You should be able to recognize these situations, draw the associated free-
body diagrams and solve for the unknowns of each case.

Particle Equilibrium. An object may be treated as a particle when the forces
acting on it are coincident, that is, all of their lines of action intersect at a
common point. In this case, they produce no moment to rotate the object, and
ΣM = 0 is not helpful. The applicable equation is

ΣF = 0,

which produces two scalar equations in two dimensions and three scalar equations
in three dimensions.

Rigid Body Equilibrium. A rigid body can rotate and translate so both
force and moment equilibrium must be considered.

ΣF = 0

ΣM = 0

In two dimensions, these equations produce in two scalar force equations and
one scalar moment equation. Up to three unknowns can be determined.

In three dimension, they produce three scalar force equations and scalar three
moment equations. Up to six unknowns can be determined.

Trusses. A truss is a structure which consists entirely of two-force members
and only carries forces at the joints connecting members. Two-force members
and loading at joints allows free-body diagram of the joints to expose the axial
loads in members.

In addition to the equations provided by treating the entire truss as a rigid
body, each joint provides two additional equations for two-dimensional trusses,
and three for non-planar trusses.

Frames and Machines. Frames and machines are structures which contain
multiple rigid body systems. Frames don’t move and are designed to support
loads. Machines are generally designed to multiply forces, and usually have
moving parts. Both frames and machines can be solved using the same methods.

All interactions between bodies are equal and opposite action-reaction pairs.
When solving frames and machines

• Two-force members provide one useful equilibrium equation, and can de-
termine one unknown.
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• In two dimensions, rigid bodies result in two scalar force equations and
one scalar moment equation. Up to three unknowns can be determined.

• In three dimensions, rigid bodies produce three scalar force equations and
scalar three moment equations. Up to six unknowns can be determined.



CHAPTER 6. EQUILIBRIUM OF STRUCTURES 201



CHAPTER 6. EQUILIBRIUM OF STRUCTURES 202

6.8 Exercises (Ch. 6)

Standalone

http://engineeringstatics.org/numbas-chapter-6.html


Chapter 7

Centroids and Centers of Gravity

A centroid is the geometric center of a geometric object: a one-dimensional
curve, a two-dimensional area or a three-dimensional volume. Centroids are use-
ful for many situations in Statics and subsequent courses, including the analysis
of distributed forces, beam bending, and shaft torsion.

Two related concepts are the center of gravity, which is the average location
of an object’s weight, and the center of mass which is the average location of
an object’s mass. In many engineering situations, the centroid, center of mass,
and center of gravity are all coincident. Because of this, these three terms are
often used interchangeably without regard to their precise meanings.

We consciously and subconsciously use centroids for many things in life and
engineering, including:

Keeping your body’s balance: Try standing up with your feet together and
leaning your head and hips in front of your feet. You have just moved your
body’s center of gravity out of line with the support of your feet.

Computing the stability of objects in motion like cars, airplanes, and boats:
By understanding how the center of gravity interacts with the accelera-
tions caused by motion, we can compute safe speeds for sharp curves on a
highway.

Designing the structural support to balance the structure’s own weight and
applied loadings on buildings, bridges, and dams: We design most large
infrastructure not to move. To keep it from moving, we must understand
how the structure’s weight, people, vehicles, wind, earth pressure, and
water pressure balance with the structural supports.

You probably have already developed a good intuition about centroids and
centers of gravity based upon your life experience, and can roughly estimate their
location when you look at an object or diagram. In this chapter you will learn
to locate them precisely using two techniques: integration ?? and the method
of composite parts ??.

203
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7.1 Weighted Averages
You certainly know how to find the average of several numbers by adding them
up and dividing by the number of values, so for example the average of the first
four positive integers is

1 + 2 + 3 + 4

4
= 2.5

More formally, if a is a set with n elements then the average, or mean, value
is

ā =
1

n

n∑
i=1

ai =
a1 + a2 + · · ·+ an

n
. (7.1.1)

This average is also called the arithmetic mean. When calculating an arith-
metic mean, each number is equally important when evaluating the average. The
overbar symbol is often used to indicate that a quantity is a mean value.

In situations where some values are more important than others, we use a
weighted average. A familiar example is your grade point average. Your GPA
is calculated by weighting your grade for each class by the credits for that class,
then dividing by the total credits you have taken. The credit values are called
the weighting factors.

In general terms a weighted average is

ā =

∑
aiwi∑
wi

(7.1.2)

Where ai are the values we are averaging and wi are the corresponding weighting
factors. The weighting factors may be different for each item being averaged, so
wi is the weighting factor for value ai. In this book we will not write the limits
on the sums, and understand that the intent is always to sum over all the values.
Notice that if the weighting factors are all identical, they can be factored out of
the sums so the weighted average and the arithmetic mean will be the same.

Weighted averaging is used to find centroids, centers of gravity and centers
of mass, the subject of this chapter. All three are points located at the “center”
the object, but the meaning of “center” depends on the weighting factors. Area
or volume are the factors used for centroids, weight for center of gravity, and
mass for center of mass.

Example 7.1.1 Course Grades.

The mechanics syllabus says that there are two exams worth 25% each,
homework is 10%, and the final is worth 40%. You have a 40 on the first
exam, a 80 on the second exam, and your homework grade is 90.
What do you have to earn on the final exam to get a 70 in the class?
Solution. Your known grades and the weighting factors are

Gi = [40, 80, 90, FE]
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wi = [25%, 25%, 10%, 40%]

Find final exam score FE so that your average grade Ḡ is 70%.

Ḡ =

∑
Giwi∑
wi

70 =
(40× 0.25) + (80× 0.25) + (90× 0.1) + (FE × 0.4)

(0.25 + 0.25 + 0.1 + 0.4)

FE =
70(1)− (10 + 20 + 9)

0.4
= 77.5.

7.2 Center of Gravity
So far in this book we have always taken the weight of an object to act at a point
at its center. This is the center of gravity: the point where all of an object’s
weight may be concentrated and still have the same external effect on the body.
In this chapter we will learn to actually locate this point.

We will indicate the center of gravity with a circle with black and white
quadrants, and call its coordinates (x̄, ȳ) or (x̄, ȳ, z̄). This point represents
the average location of all the particles which make up the body.

The center of gravity of a body is fixed
with respect to the body, but the co-
ordinates depend on the choice of co-
ordinate system. For example, in Fig-
ure 7.2.1 the center of gravity of the
block is at its geometric center mean-
ing that x̄ and ȳ are positive, but if the
block is moved to the left of the y axis,
or the coordinate system is translated
to the right of the block, x̄ would then
become negative.

y

x

Figure 7.2.1 Location of the centroid,
measured from the origin.

Lets explore the center of gravity of a familiar object. Take a pencil and try
to balance it on your finger. How do you decide where to place it? You likely
supported it roughly in the middle, then adjusted it until it balanced. You found
the point where the moments of the weights on either side of your finger were in
equilibrium.

Let’s develop this balanced moment idea mathematically.
Assume that the two halves of the pencil have known weights acting at points

1 and 2. How could we replace the two weights with a single statically equivalent
force? Recall from Section 4.8 that statically equivalent systems produce the
same external effect on the object —the net force on the object, and the net
moment about any point don’t change. An upward force at this point will
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support the pencil without tipping.
To be equivalent, the total weight must equal the total weight of the parts.

W = W1 +W2. Common sense also tells us that W will act somewhere between
W1 and W2.

1 2

O

O

Figure 7.2.2 (top) Side view of a pencil representing each half as a particle.
(middle) A force diagram showing the weights of the two particles. (bottom) An
equivalent system consisting of a single weight acting at the pencil’s center of
gravity.

Next, let’s do the mathematical equivalent of sliding your finger back and
forth until a balance point is located. Pick any point O to be the origin, then
calculate the total moment about O due to the two weights.

The sum of moments around point O can be written as:∑
MO = −x1W1 − x2W2

Notice that the moment of both forces are clockwise around point O, so the
signs are negative according to the right-hand rule. We want a single equivalent
force acting at the (unknown) center of gravity. Call the distance from the origin
to the center of gravity x̄.

x̄ represents the mean distance of the weight, mass, or area depending on
the context of the problem. We are evaluating weights in this problem, so x̄
represents the distance from O to the center of gravity.

The sum of moments around point O for the equivalent system can be written
as: ∑

MO = −x̄W

The moment of total weight W is also clockwise around point O, so the sign
of moment will also be negative according to the right-hand rule. Since the two
representation are equivalent we can equate them and solve for x̄.

−x̄W = −x1W1 − x2W2

x̄ =
x1W1 + x2W2

W1 +W2
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This result is exactly in the form of (7.1.2) where the value being averaged
is distance x and the weighting factor is the weight of part Wi and the result is
the mean distance x̄.

The pencil was made up of two halves, but this equation can easily be ex-
tended n discrete parts. The resulting general definition of the centroidal coor-
dinate x̄ is:

x̄ =

∑
x̄iWi∑
Wi

(7.2.1)

where:

Wi is the weight of part i,

x̄i is the x coordinate of the center of gravity of element i, and∑
is understood to mean “sum all parts” so there is no need to write

n∑
i=1

.

The numerator is the first moment of force which is literally a moment of
force as we defined it in Chapter 3. The denominator is the sum of the weights
of the pieces, which is the weight of the whole object. We will soon also see first
moments of mass and first moments of area and in Chapter ??, we will introduce
second moments, which are the integral of some quantity like area, multiplied
by a distance squared.

We treated the pencil as a one-dimensional object, so this discussion focused
on x̄. There are similar formula for the other dimensions as well

x̄ =

∑
x̄iWi∑
Wi

ȳ =

∑
ȳiWi∑
Wi

z̄ =

∑
z̄iWi∑
Wi

. (7.2.2)

In words, these equations say

distance to CG =
sum of first moments of weight

total weight

They apply to any object which can be divided into discrete parts, and they
produce the coordinates of the object’s center of gravity.

Question 7.2.3

Can you explain why the center of gravity of a symmetrical object will
always fall on the axis of symmetry?
Answer. If the object is symmetrical, every subpart on the positive side
of the axis of symmetry will be balanced by an identical part on the neg-
ative side. The first moment for the entire shape about the axis will sum
to zero, meaning that

x̄ =

∑
x̄iWi∑
Wi

=
0

W
= 0.
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